
Master Semester Project:

On Quantum Algorithms for Solving Linear Systems of

Equations

Adrien Vandenbroucque
Supervisor: Dr. Nicolas Macris

Fall 2019

1 Introduction

Systems of linear equations arise extensively in many scientific fields, and have many applications
in real-life problems. An example is in the field of machine learning, where given multidimen-
sional data by an N ×N matrix A and labels by a N ×1 vector b, one must find x such that Ax
equals b, or is as close as possible to b. In fields such as computer vision and others, in practice,
the matrix A turns out to be often symmetric. In this case, the best known method is the
conjugate gradient method, with runtime complexity O(Nsκ log(1/ε)), where s is the maximum
number of non-zero entries in a row (or column) of A and κ is its condition number. So in cases
where the dimension N of A is very large, one needs to find faster methods in order to solve this
problem efficiently.

In 2009, Harrow, Hassidim and Lloyd devised a quantum algorithm to solve linear systems of
equations, but not in the same sense as in the classical case. That is, the algorithm produces a
quantum state |x〉 =

∑N
i=1 xi |i〉 where the coefficients xi correspond to the different components

of x. The time complexity of the quantum algorithm isO(logNs2κ2/ε), providing an exponential
speedup in N compared to the classical one.

In this report, a review of this algorithm is presented first, explaining in more detail how
one can compute the different parts involved. Secondly, a method is proposed to solve problems
such as the satisfiability problems when the input matrix A has a specific structure. This can
be extended to more general problems. Thirdly, an implementation of a simple 2x2 system is
described together with the obtained results. Finally, a summary is given in the conclusion
together with the general trends observed.

2 Problem statement

We are given N linear equations with N unknown, which can be expressed as Ax = b, where
A ∈ CN×N is the matrix of coefficients, x ∈ CN is a vector of unknown components, and b ∈ CN
is the vector of solutions. If A is invertible, then we can write the solution as x = A−1b. This
problem is known as the Linear Systems Problem (LSP), and we can more formally define it as
follows.

Definition 2.1 (LSP). Given a system of linear equations, with A ∈ CN×N and a vector
b ∈ CN , find a vector x ∈ CN such that Ax = b, or output a flag if no solution was found.

The quantum version of this problem is formulated in Definition 2.2.

Definition 2.2 (QLSP). Let A ∈ CN×N be an Hermitian matrix with unit determinant, and
b,x ∈ CN vectors such that x = A−1b. Let the quantum state on dlog(N)e qubits |b〉 and |x〉 be
given by

1

|b〉 :=

∑N
i=1 bi |i〉

‖
∑N
i=1 bi |i〉 ‖2

and |x〉 :=

∑N
i=1 xi |i〉

‖
∑N
i=1 xi |i〉 ‖2

(1)

where bi and xi are the ith component of vector b and x respectively.
Given the matrix A and the state |b〉, find a state |x̃〉 such that ‖|x̃〉 − |x〉 ‖2≤ ε with probability
Ω(1) (say, greater than 1/2), with a flag if no solution was found.

Although both definitions look very similar, they actually solve distinct problems. In the
LSP, the goal is to find the solution x to the equation Ax = b. In the quantum version, the goal
is to prepare a state |x〉 such that the equation A |x〉 = |b〉 is satisfied, but this does not mean
that we have access to the classical vector x. Since we are manipulating quantum states, it is
also not clear whether getting |x〉 can be done efficiently. Indeed, for that one should be able
to first prepare the state |b〉 in an efficient way, then perform various computations, and finally
read the solution |x〉. Here, ”efficient” means that the algorithm is ”polylogarithmic” in N , the
system size, however we see here that this will be problematic as reading out the whole of |x〉
would require O(N) time. So it is crucial to remember that a solution to QLSP must be used
in an application where only samples from the vector x are needed, or if we are interested in
computing 〈x|M |x〉 for some operator M .

Looking at the problem definitions given before, it may not be clear that encoding our problem
in quantum states, solving using HHL, and reading out |x〉 will actually give us the components
of x. We prove in the following lemma that it is actually equivalent.

Lemma 2.1. Solving QLSP on the encoded version |b〉 of b is equivalent to solving LSP on b,
in the sense that the solution to QLSP ouptuts a state |x〉 which encodes the components of x,
the solution to LSP.

Proof. Let A =
∑N−1
j=0 λjuju

T
j be the spectral decomposition of A, where λjs are the eigenvalues

and the ujs are its eigenvectors. Note that since the ujs are orthonormal, we can write it using

the Dirac notation as A =
∑N−1
j=0 λj |uj〉 〈uj |.

Now, as in definition 2.2, let |b〉 and |x〉 be the encoded versions of b and x respectively. We
can rewrite them in the basis of the eigenvectors of A, so

|b〉 =

∑N−1
j=0 βj |uj〉
‖b‖2

and |x〉 =

∑N−1
j=0 x̃j |uj〉
‖x‖2

. (2)

We want to show that |x〉 = |A−1b〉 is proportional to A−1 |b〉, so that our algorithm returns
a valid answer. We have

A−1 |b〉 =
1

‖b‖2

N−1∑
j=0

βj
λj
|uj〉 (3)

which gives

A−1 |b〉
‖A−1 |b〉 ‖

=
1

1

‖b‖2

√∑N−1
j=0

|βj |2
|λj |2

1

‖b‖2

N−1∑
j=0

βj
λj
|uj〉 =

1√∑N−1
j=0

|βj |2
|λj |2

N−1∑
j=0

βj
λj
|uj〉 (4)

when normalized.
Note that the ith component of A−1 |b〉 is

〈ui|A−1 |b〉 =
1

‖b‖2
βi
λi
. (5)

2

On the other hand, the ith component of |x〉 is

〈ui|x〉 =
1

‖x‖2
x̃i =

1

‖x‖2
(uTi A

−1b). (6)

Now we would want to use the Dirac notation since ui is a unit vector, but the problem is
that b might not be. However, we can still do it using

1

‖x‖2
(uTi A

−1b) =
1

‖x‖2
(uTi A

−1 b

‖b‖2
‖b‖2) =

1

‖x‖2
(〈ui|A−1 |b〉 ‖b‖2) =

1

‖x‖2
βi
λi
, (7)

so that x̃i = βi
λi

. A such, we can rewrite

|A−1b〉 = |x〉 =
1

‖x‖2

N−1∑
j=0

βj
λj
|uj〉 (8)

which is equal to

|A−1b〉
‖|A−1b〉 ‖2

=
1

1
‖x‖2

√∑N−1
j=0

|βj |2
|λj |2

1

‖x‖2

N−1∑
j=0

βj
λj
|uj〉 =

1√∑N−1
j=0

|βj |2
|λj |2

N−1∑
j=0

βj
λj
|uj〉 (9)

when normalized.
As such, we see that the normalized |A−1b〉 and A−1 |b〉 are equal, so we get that

|A−1b〉 ∝ A−1 |b〉 (10)

which concludes the proof.

3 Description of the HHL algorithm

3.1 Solving Systems of Linear Equations

Before giving a description of the procedure of the HHL algorithm, we briefly review what the
algorithm computes in order to solve systems of linear equations.

Recall that A is Hermitian, and as such it has a spectral decomposition. So we can write

A =

N−1∑
j=0

λj |uj〉 〈uj | , (11)

where the λj ’s are the eigenvalues and the |uj〉’s are the eigenvectors. The vector |b〉 can be
rewritten in the basis formed by the eigenvectors of A, so

|b〉 =

N−1∑
j=0

βj |uj〉 . (12)

Observing that the inverse of A can be obtained easily from the spectral decomposition of A
as

3

A−1 =

N−1∑
j=0

1

λj
|uj〉 〈uj | , (13)

we finally get

|x〉 = A−1 |b〉 =

N−1∑
j=0

βj
λj
|uj〉 〈uj | , (14)

which is the state that the HHL algorithm tries to reach.

3.2 High-level description

Here, we give a high-level explanation of the HHL algorithm, and explain each of the steps in
more detail in separate sections.

The steps are as follows:

1. Prepare the input state |0〉 |b〉 =
∑N−1
j=0 βj |0〉 |uj〉, where logN is the number of qubits

needed to represent |b〉.

2. Apply the Quantum Phase Estimation (QPE) algorithm with unitary U = eiAt in order to
find the eigenvalues of A, with t to be specified later. They will be stored in a register of
logD qubits, number which tuned depending on what accuracy and probability of success is
desired for the phase estimation. After performing the inverse Quantum Fourier Transform
part of the phase estimation, the state is

N−1∑
j=0

D−1∑
k=0

αk|jβj |k〉 |uj〉 . (15)

Note that |αk|j | will be large for values of k such that k ≈ λjt
2π (this will be explained in the

section about Quantum Phase Estimation). So one can relabel the |k〉 states as λ̃k = 2πk
t ,

giving

N−1∑
j=0

D−1∑
k=0

αk|jβj |λ̃k〉 |uj〉 . (16)

Supposing that the phase estimation is perfect, the state of the system is

N−1∑
j=0

βj |λj〉 |uj〉 . (17)

3. Append an ancilla qubit and apply a rotation conditioned on the value of |λj〉, resulting
in

N−1∑
j=0

βj |λj〉 |uj〉

(√
1− C2

λ2j
|0〉+

C

λj
|1〉

)
. (18)

where C is a constant to be chosen such that the rotation can be done physically. Typically,
C is chosen such that C ≤ minj |λj |= O(1/κ) to ensure that the rotation is valid.

4

4. Uncompute the values of the register containing the eigenvalues by applying the inverse
Quantum Phase Estimation,

N−1∑
j=0

βj |0〉 |uj〉

(√
1− C2

λ2j
|0〉+

C

λj
|1〉

)
. (19)

5. Measure the last qubit in the computational basis. Conditioned on observing |1〉, the state
is

1√∑N−1
j=0

C2|βj |2
|λj |2

N−1∑
j=0

Cβj
λj
|0〉 |uj〉 , (20)

which corresponds to A−1 |b〉 = |x〉 up to normalization. Note that 1√∑N−1
j=0

C2|βj |2

|λj |2

is the

probability of measuring 1 for the ancilla qubit.

4 Quantum Phase Estimation

We describe here the Quantum Phase Etimation procedure used in the HHL algorithm. As this
is the step that can induce the most errors in the computation, we provide a full error analysis
of the algorithm.

4.1 Algorithm description

The phase estimation procedure consists in finding the eigenvalues of an operator U . More
precisely, given a unitary matrix U and one of its eigenvector |ψ〉 with eigenvalue e2πiλ, the goal
of the algorithm is to estimate λ.

The procedure requires two registers, one containining d qubits all initialized to |0〉 which
will contain the eigenvalue at the end, and another one initialized to |ψ〉, and containing as
many qubits as necessary to represent |ψ〉. For the first register, the choice of d will depend on
the accuracy we want for the estimate of λ, and also with what probability we wish the phase
estimation to be successful.

Definition 4.1 (Quantum Phase Estimation). Let U ∈ CN×N be a unitary matrix, |u〉 one of
its eigenvector with eigenvalue e2πiλ, and d the number of bits we wish to use to represent its
eigenvalue. The QPE algorithm takes as input the unitary gate representing U together with the
state |0〉 |ψ〉 and d, and outputs the state |λ̃〉 |ψ〉. Note here the use of λ̃ instead of λ since λ̃ will
be a d-bits approximation to λ.

An important tool that is needed to perform the QPE is the (inverse) Quantum Fourier
Transform (QFT), which we define below.

Definition 4.2 (Quantum Fourier Transform). Let |0〉 , . . . |N − 1〉 be an orthonormal basis.
The QFT is defined as a linear operator having the following action on the basis states

|j〉 −→ 1√
N

N−1∑
k=0

e2πijk/N |k〉 (21)

The inverse operator, called the inverse Quantum Fourier Transform, has the following action
on the basis states

|j〉 −→ 1√
N

N−1∑
k=0

e−2πijk/N |k〉 . (22)

5

The circuit representation of the QPE is shown in Figure 1.

Figure 1: Circuit for the Quantum Phase Estimation

The unitary we apply in HHL for the quantum phase estimation is U = eiAt. Since A has
spectral decomposition

A =
∑
j

λj |uj〉 〈uj | , (23)

we can write that

eiAt =
∑
j

eiλjt |uj〉 〈uj | . (24)

We present below the evolution of a state |0〉 |uj〉 throughout the QPE algorithm.

1. Compute a superposition of states in register containing d bits using Hadamard gates:

|0〉 |uj〉 −→
1√
2d

2d−1∑
τ=0

|τ〉 |uj〉 (25)

2. Apply U in successive powers of 2, leading to state

1√
2d

2d−1∑
τ=0

|τ〉Uτ |uj〉 =
1√
2d

2d−1∑
τ=0

exp (iλjtτ) |τ〉 |uj〉 . (26)

3. Apply the inverse Fourier transform, that is that we do the mapping |τ〉 → 1√
2d

∑2d−1
k=0 e−2πikτ/2

d |k〉.
So our state becomes

1

2d

2d−1∑
τ=0

eiλjtτ
2d−1∑
k=0

e
−2πikτ

2d |k〉 |uj〉 =
1

2d

2d−1∑
k=0

2d−1∑
τ=0

e
2πiτ

(
λjt

2π −
k

2d

) |k〉 |uj〉 (27)

=

2d−1∑
k=0

αk|j |k〉 |uj〉 , (28)

where αk|j = 1
2d

∑2d−1
τ=0 e

2πiτ
(
λjt

2π −
k

2d

)
is the probability amplitude of |k〉.

6

4. Measure the d-bits register. We denote here λ̃j the integer in {0, 1, . . . , 2d − 1} such that

λ̃j/2
d is the best d-bit approximation to

λjt
2π . Assuming that

λjt
2π can be exactly represented

with d bits, then we are sure to measure it since

∣∣∣∣∣∣〈λ̃j | 1

2d

2d−1∑
k=0

2d−1∑
τ=0

e
2πiτ

2d

(
λjt

2π −
k

2d

) |k〉
∣∣∣∣∣∣
2

=
1

22d

∣∣∣∣∣∣
2d−1∑
τ=0

e
2πiτ

2d

(
λjt

2π −
λ̃j

2d

)∣∣∣∣∣∣
2

(29)

=
1

22d

∣∣∣∣∣∣
2d−1∑
τ=0

e
2πiτ

2d

(
λjt

2π −
λjt

2π

)∣∣∣∣∣∣
2

(30)

=
1

22d

∣∣∣∣∣∣
2d−1∑
τ=0

e0

∣∣∣∣∣∣
2

(31)

= 1. (32)

So in this case, we are done with the phase estimation and we are able to recover the
eigenvalue as needed, that is we end in state

|λ̃j〉 |uj〉 . (33)

4.2 Error analysis

In previous section, we presented the procedure and ended it assuming that the eigenvalue can
be exactly represented with d bits. However, this may not be the case, and we will show here
that even if we do not get the precise output, we can find what value of d to use in order to
achieve an error smaller than ε. We use proof ideas from [10, 12] and go in detail for every step.

We write
λjt
2π = a/2d + δ, where a is the smallest integer such that a/2d is the best d-bits

approximation to
λjt
2π , and δ is the rounding error with 0 ≤ δ ≤ 2−d. The probability amplitude

of |(a+ k) mod 2d〉 is

αk|j =
1

2d

2d−1∑
τ=0

[
exp

(
2πi

(
λjt

2π
− a+ k

2d

))]τ
(34)

=
1

2d

1− exp
(

2πi
(

2d
λjt
2π − (a+ k)

))
1− exp

(
2πi

(
λjt
2π −

a+k
2d

)) (35)

=
1

2d
1− exp

(
2πi

(
2dδ − k

))
1− exp

(
2πi

(
δ − k

2d

)) . (36)

We can now bound the probability of getting an error greater than e/2d, that is getting a
result m such that |m− a|> e. The probability of getting such an m is given by summing over
the probability amplitudes of states |k〉 such that |k|≥ e. Remember that k takes values in
{0, 1, . . . , 2d − 1}, but here we will take k in {−2d−1, . . . , 2d−1 − 1} which is fine since taken
mod 2d it gives back the original set of values that k can take. So we have

p(|m− a|> e) =

−(e+1)∑
k=−2d−1

|αk|j |2+

2d−1−1∑
k=e+1

|αk|j |2, (37)

which we will bound here. First, we state a useful lemma.

7

Lemma 4.1. Let x ∈ R such that −π ≤ x ≤ π. Then

|1− eix|≥ 2|x|
π
. (38)

Proof. We have

|1− eix| = |1− (cos(x) + i sin(x))| = |(1− cos(x)) + i sin(x)| (39)

=
√

(1− cos(x))2 + sin(x)2 =
√

1− 2 cos(x) + cos(x)2 + sin(x)2 (40)

=
√

2(1− cos(x)) = 2

√
1− cos(x)

2
= 2

∣∣∣sin(x
2

)∣∣∣ . (41)

We will now show that
∣∣sin (x2)∣∣ ≥ |x|π for −π ≤ x ≤ π. Between 0 and π, sin

(
x
2

)
is concave,

x
π is linear, and they take the same value at the extremums, so sin

(
x
2

)
≥ x

π . Remembering that

sin(x) and x are both odd funtions, by symmetry, we have − sin
(
x
2

)
≥ − x

π for x between −π
and 0. As such, we have

|1− eix|= 2
∣∣∣sin(x

2

)∣∣∣ ≥ 2|x|
π

(42)

when −π ≤ x ≤ π.

Let us bound |αl|j |. By the triangle inequality, |1− eix|≤ 2, so

|αk|j |=

∣∣∣∣∣ 1

2d
1− e2πi(2

dδ−k)

1− e2πi(δ−
k

2d
)

∣∣∣∣∣ =

∣∣∣1− e2πi(2dδ−k)∣∣∣
2d
∣∣∣1− e2πi(δ− k

2d
)
∣∣∣ ≤ 2

2d
∣∣∣1− e2πi(δ− k

2d
)
∣∣∣ . (43)

By lemma 4.1, we get

|αk|j |≤
2

2d 2
π

∣∣2πi (δ − k
2d

)∣∣ =
1

2d+1
(
δ − k

2d

) . (44)

Combining with equation 37, we have

p(|m− a|> e) ≤
−(e+1)∑
k=−2d−1

(
1

2d+1
(
δ − k

2d

))2

+

2d−1−1∑
k=e+1

(
1

2d+1
(
δ − k

2d

))2

(45)

=

−(e+1)∑
k=−2d−1

1

4 (2dδ − k)
2 +

2d−1−1∑
k=e+1

1

4 (2dδ − k)
2 . (46)

Recall 0 ≤ 2dδ ≤ 1, so 1
(2dδ−k)2 ≤

1
k2 when k is negative (the RHS is biggest when the

denominator is smallest, which happens when 2dδ takes its smallest value, which is 0), and
1

(2dδ−k)2 ≤
1

(k−1)2 when k is positive (the RHS is biggest when the denominator is smallest,

which happens when 2dδ takes its biggest value, which is 1). Thus,

8

p(|m− a|> e) ≤
−(e+1)∑
k=−2d−1

1

4k2
+

2d−1−1∑
k=e+1

1

4 (k − 1)
2 (47)

=

2d−1∑
k=e+1

1

4k2
+

2d−1−1∑
k=e+1

1

4 (k − 1)
2 (48)

=

2d−1∑
k=e+1

1

4k2
+

2d−1−2∑
k=e

1

4k2
(49)

≤
2d−1∑
k=e

1

4k2
+

2d−1∑
k=e

1

4k2
(50)

=
1

2

2d−1∑
k=e

1

k2
(51)

≤ 1

2

∫ 2d−1

e−1

1

k2
dk (52)

=
1

2(e− 1)
− 1

2d−1
(53)

≤ 1

2(e− 1)
. (54)

This means that if we want to measure the eigenvalue to accuracy 2−n, we choose e = 2d−n−1.
We will at least need n qubits for that, but how many extra ones do we need to make the
probability of error arbitrarily small? Writing d = n+ p, we get that the probability of error is

1
2(2p−2) , which means that taking p = log

(
1
2ε + 2

)
gives use the desired bound. Hence, taking

d = n+log
(

1
2ε + 2

)
qubits will give us the correct measurement to accuracy 2−n with probability

1− ε.

5 Hamiltonian Simulation

A core part of the HHL algorithm depends heavily on how efficiently we can compute eiAt,
the unitary used in the QPE procedure. In this section we discuss how we can perform this
operation, without diving much into the details.

The question of whether we can efficiently simulate Hamiltonians is fundamental in quantum
computing. It was shown in [9] that this can be done for k-local Hamiltonians, i.e. a sum
of polynomially many (w.r.t the number of qubits) Hamiltonians that each act on a constant
number of qubits, so k = O(1).

We review here various methods for simulating Hamiltonians, and we will focus particularly
on sparse Hamiltonians simulation, as is the case in the HHL algorithm.

There exists multiple schemes for simulating sparse Hamiltonian efficiently, and we use here
one presented in [1].

There are 3 main steps in order to simulate eiAt:

1. Find a decomposition of A into a sum of Hamiltonians A =
∑
iHi such that each Hi is

1-sparse.

2. Compute efficiently eiHit

3. Combine all the eiHit using the Lie-Product formula and get a good approximation of eiAt

We review the first and third steps in the following sections. For efficiently simulating 1-sparse
Hamiltonians, details can be found in chapter 4 of [4].

9

5.1 Trotter-Suzuki methods

These methods are very useful for k-local Hamiltonians. Indeed, when we are given a Hamiltonian
acting on n qubits

Ĥ =

L∑
i=1

Hi, (55)

where each Hi acts on at most k = O(1) qubits, and L is polynomial in n, it may be hard
to compute eiHt. However, it is much simpler to approximate eiHit as it acts on a much smaller
number of qubits. But now the question is, how can we reconstruct eiHt from eiHit? In general,
the Hi’s do not commute, and as such eiHt 6= ΠL

i=1e
iHit.

However, a fundamental result in quantum simulation gives us the following asymptotic
approximation:

Theorem 5.1 (Trotter formula). Let A and B be Hermitian operators. Then for any real t

lim
m→∞

(
eiAt/meiBt/m

)m
= ei(A+B)t. (56)

It is important to emphasize here that this holds even if A and B do not commute. If we
want to restrict the simulation to an error ε, then we can ”truncate” the Trotter formula after
a certain number of iterations m. That is,

∥∥∥ei(A+B)t −
(
eiAt/meiBt/m

)m∥∥∥
2
≤ ε (57)

The following lemma from [6] shows us a choice of m in order to get the precision ε desired.

Lemma 5.2 (Trotter formula). Let A and B be Hermitian operators, m ∈ N and t ∈ R. Then

∥∥∥ei(A+B)t −
(
eiAt/meiBt/m

)m∥∥∥
2

= O

(
t2 max (‖A‖2, ‖B‖2)

2

m

)
. (58)

As such, taking the number of steps m to be m = O
(
t2 max(‖A‖2,‖B‖2)2

ε

)
gives us an error of

less than ε.
The theorem and lemma above can be generalized to an arbitrary sum of Hamiltonians

Ĥ =
∑L
i=1Hi, so

lim
m→∞

(
eiH1t/meiH2t/m . . . eiHLt/m

)m
= ei(H1+H2+···+HL)t = eiĤt. (59)

5.2 Decomposition into sum of Hamiltonians

The Trotter formula enables us to compute eiHt for a Hamiltonian H when it is given as a sum
of efficiently computable local Hamiltonians. But how to perform the decomposition? We use
the technique presented in [1], which finds a decomposition of a Hamiltonian based on ideas from
graph theory. Before explaining it, we first introduce some definitions relevant in our discussion.

Definition 5.1 (Graph). A graph is a pair G = (V,E), where V is a set whose elements are
called vertices, and E is a set of unordered pairs of vertices, whose elements are called edges.

Example 5.1. An example of a graph is shown in figure 2. Here, V = {1, 2, . . . , 7} and E =
{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (2, 6), (6, 7), (2, 7)}.

10

Figure 2: An example of a graph G together with a possible proper k-edge coloring of it for
k = 4

Definition 5.2 (Adjacency matrix). Let G = (V,E) be a graph such that |V |= n. The adjacency
matrix A of G is a n× n symmetric matrix whose elements are defined as:

Aij =

{
1 if i, j ∈ V and (i, j) ∈ E,
0 otherwise.

(60)

That is, Aij = 1 if vertices i and j are connected, and Aij = 0 otherwise.

Example 5.2. The adjacency matrix for the graph in figure 2 is

A =



0 1 0 0 0 0 0
1 0 1 0 0 1 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 1 0 0 1 0 1
0 1 0 0 0 1 0


(61)

Definition 5.3 (Graph coloring). Let G = (V,E) be a graph. An k-edge coloring of G is a
proper coloring of the edges, meaning an assignment f : E → {1, 2, . . . , k} of colors to edges so
that no vertex is incident to two edges of the same color.

We also state the following theorem from [8] about graph coloring:

Theorem 5.3 (Vizing’s theorem). Let G = (V,E) be a graph with maximum degree d, i.e. any
vertex can be connected to at most d vertices. Then there exists an k-edge colouring of G with k
at most d+ 1.

Let us see how one can decompose a sparse Hamiltonian into a sum of efficiently computable
ones.

Since a Hamiltonian can be represented as a square matrix, we can think of it as an adjacency
matrix and thus associate a graph to it. In this case, we will consider an adjacency matrix A
such that

Aij =

{
1 if Hij 6= 0,

0 if Hij = 0.
(62)

We can do the following:

1. Compute a k-edge coloring of the graph.

11

2. Consider the subgraphs Ac induced by each of the colors. This gives us a decomposition
of the adjacency matrix as

A =

k∑
c=1

Ac. (63)

Remark. This decomposition is indeed good for two reasons. First, by Vizing’s theorem, if the
Hamiltonian is s-sparse, then the number of colors needed, i.e. the number of terms in the sum,
will be ≤ s+1. Second, one can observe that each subgraph induced by a color is just composed
of vertices that are connected to at most 1 other vertex. As such the adjacency matrix of each
subgraph will be symmetric, 1-sparse, and so we can efficiently simulate them individually.

6 Controlled Rotations for Eigenvalues Inversion

Recall that after the Quantum Phase Estimation step of the HHL algorithm, we must perform
controlled rotations in order to compute the inverse of the eigenvalues previously computed.
More specifically, after the QPE, we are in state

N−1∑
j=0

βj |λ̃j〉 |uj〉 (64)

if it was performed without any errors, where λ̃j is such that λ̃j/2
d is the best d-bit approx-

imation to
λjt
2π . After appending an ancilla qubit, the controlled rotations is what allow us to

end up in state

N−1∑
j=0

βj |λ̃j〉 |uj〉

(√
1− C2

λ̃j
2 |0〉+

C

λ̃j
|1〉

)
. (65)

We state the following lemma from [6] which state that using controlled rotations can bring
the system to the desired state.

Lemma 6.1. Let λ ∈ R and λ̃ be its d-bits finite representation. Then there is a unitary Uλ
that acts as

Uλ : |λ̃〉 |0〉 7→ |λ̃〉
(

cos(λ̃) |0〉+ sin(λ̃) |1〉
)
. (66)

It turns out that the operator that can do this is the controlled Y rotation of angle 2λ̃, where

a Y rotation of angle θ is defined as RY (θ) = e−iθσy/2 =

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
. Here, σy is

the Pauli Y matrix.
So this means that in the HHL algorithm, performing a controlled Y rotation of angle

2 arcsin
(
C
λ̃

)
gives us mapping that computes

|λ̃〉 |0〉 7→ |λ̃〉
(

cos(arcsin(C/λ̃)) |0〉+ sin(arcsin(C/λ̃)) |1〉
)

(67)

which is exactly the mapping

|λ̃〉 |0〉 7→ |λ̃〉

√1− C2

λ̃2
|0〉+

C

λ̃
|1〉

 (68)

12

desired.
There is a detail we omitted above which is very important for the implementation of a

circuit. The controlled rotation can be easily done when we know the value of the angle as we
described before. The problem here is that our angle is a function of λ̃j , which is stored in the
circuit after the Quantum Phase Estimation procedure. Thus, we can not simply do Y rotations
of angles depending on the eigenvalues as we don’t know them a priori. We explain here how the
desired state can still be reached by using a procedure known as Polynomial State Preparation,
presented in [14, 15].

6.1 Polynomial State Preparation

First we define exactly the mapping done by a controlled Y rotation.

Definition 6.1. A controlled RY (θ) rotation with control qubit |q〉 and target qubit |0〉 is a gate
that performs:

|q〉 |0〉 7→ |q〉 e−iqθσy/2 |0〉 = |q〉 (cos(qθ/2) |0〉+ sin(qθ/2) |1〉) . (69)

In the same way, a multi-controlled RY (θ) rotation with control qubits |q0〉 , |q1〉 , . . . , |qk〉 and
target qubit |0〉 is a gate that performs:

|q0〉 |q1〉 . . . |qk〉 |0〉 7→ |q0〉 |q1〉 . . . |qk〉 e−iq0q1...qkθσy/2 |0〉 . (70)

Observe that the action of performing successive controlled Y rotations can be also written
in a compact manner. For example, a controlled Y rotation of angle θ1 controlled by qubit q0
followed by a mutli-controlled Y rotation of angle θ2 controlled by qubit q0 and q1 can be written
as

|q0〉 |q1〉 |0〉 7→ |q0〉 |q1〉 e−i(q0q1θ2+q0θ1)σy/2 |0〉 . (71)

Note how q0q1θ2 + q0θ1 = p(q) is a polynomial, and q1q0 is the binary representation of q.
This shows that by choosing appropriate θi’s, we could implement arbitrary polynomials of q.

To make things, clearer, we show an example of implementation for a simple case.

Example 6.1. Suppose that we have two qubits q0, q1 as before and an ancilla qubit, and we
want to perform a rotation that does the following mapping

|q0〉 |q1〉 |0〉 7→ |q0〉 |q1〉 e−ip(q)σy/2 |0〉 , (72)

where p(x) = c0 + c1x+ c2x
2. Here, we have x = 2q1 + q0, which is the binary expansion of

q. Replacing in p(x) and remembering that q2i = qi since these are bits, we have

p(q) = p(2q1 + q0) = c0 + c1(2q1 + q0) + c2(2q1 + q0)2 (73)

= c0 + c1(2q1 + q0) + c2(4q1 + 4q1q0 + q0) (74)

= c0 + q0(c1 + c2) + q1(2c1 + 4c2) + q0q14c2 (75)

which gives us a way to implement it with controlled Y rotations. Indeed, the circuit can be
represented as shown in Figure 3.

The example can of course be generalized to implement polynomials of degree higher than
two, and for more than just two qubits. In the case where we have d qubits and a polynomial of
degree k, we will have

13

|q0〉 • •
|q1〉 • •
|a〉 RY (c0) RY (c1 + c2) RY (2c1 + 4c2) RY (4c2)

Figure 3: Diagram of circuit with controlled Y rotations for the example polynomial

p(q) = p

(
d−1∑
i=0

2iqi

)
=

k∑
j=0

aj

(
d−1∑
i=0

2iqi

)i
, (76)

and this can also be implemented with the help of controlled Y rotations.
In fact, one can perform many functions f(x) : R 7→ R using a properly chosen polynomial

p(q) so that the values of p(q) = f(q) for q ∈ {0, . . . , 2d−1}, if q is represented using d bits. This
would give a way to implement f(x) = 2 arcsin(C/x), the function used in the HHL algorithm,
using (multi-)controlled Y rotations.

In the next section, we will see how we can exactly represent functions when there is a d-qubit
input using the concept of Walsh transform.

6.2 Exact Function Representation and Walsh Transform

An arbitrary function f of d qubits can be represented as a polynomial

f(q0, q1, . . . , qd−1) = D +D0q0 +D1q1 + · · ·+D01q0q1 +D02q0q2 + · · ·+D01...d−1q0q1 . . . qd−1,
(77)

which is the sum of all subsets of the input qubits. Each subset Si of size i has a corresponding
coefficient D. Note that later, we will refer to D(Si) as the coefficient corresponding to subset
Si. We want to be able to choose the coefficients so that when evaluating f(q0, q1, . . . , qd−1), we

get the true value of f , that is f
(∑d−1

i=0 2iqi

)
.

We claim (see lemma 6.2) that f can also be represented as

f(q0, q1, . . . , qd−1) = C + C0(−1)q0 + C1(−1)q1 + · · ·+ C01(−1)q0+q1

+ C02(−1)q0+q2 + · · ·+ C01...d−1(−1)q0+q1+···+qd−1 (78)

for appropriate choices of C’s.
In order to make the notation more compact, we will represent the qubits q0, q1, . . . , qd−1 as

a vector q ∈ {0, 1}d. As such we can now write (78) as

f(q) =
∑

b∈{0,1}d
C(b)(−1)〈q,b〉. (79)

Example 6.2. For the case d = 2, we get

f(q) = f

([
q0
q1

])
= C

([
0
0

])
+ C

([
1
0

])
(−1)q0 + C

([
0
1

])
(−1)q1 + C

([
1
1

])
(−1)q0+q1 .

(80)

It is good to recall what the overall goal is. We would like to compute a function f : R→ R
with inputs restricted to {0, 1, . . . , 2d − 1}. Moreover, as shown in (84), we want to find a
representation of f(q) such that we can implement it using Y rotations. At the same time,

observe that we know the actual value of f(q) since we can compute it as f
(∑d−1

i=0 2iqi

)
. So

14

really, the aim is to find what the values of the coefficients C(b), from which we can find the
coefficients D(Si) which correspond to the polynomial representation of the function. From
there, we can use the Polynomial State Preparation ideas presented in previous section in order
to choose appropriate controlled Y rotations for the implementation.

6.2.1 Walsh Transform

It turns out that there is a simple equation that relates f(q) to the coefficients C(b). Equation
(84) revealed how to compute f from the C’s, and we can in fact compute the C’s from f in a
similar fashion. The two entities are related through what is called the Walsh Transform, which
is the analogue of the Fourier Transform but for boolean functions. We can find the values of
the coefficients as

C(b) =
1

2n

∑
q∈{0,1}d

f(q)(−1)〈q,b〉. (81)

as described in [11]. Note that we know the actual value of f(q) which is f
(∑d−1

i=0 2iqi

)
, so

we can compute all the values C(b).

6.2.2 Computing the right coefficients

In fact, we are interested in computing the coefficients D(Si) in order to implement using con-
trolled Y rotations. But how do the coefficients C(b) relate to coefficients D(Si)?

We have the following.

Lemma 6.2. Let Si be a subset of size i of the qubits, which we represent with a set of indices, i.e.
Si = {k0, k1, . . . , ki−1}. Then one can compute the corresponding coefficient D(Si) in equation
(77) using

D(Si) = (−2)i
∑

b∈{0,1}d
C(b)

i−1∏
j=0

bkj , (82)

where bi is the ith component of vector b, and C(b) is as defined in equation (81).

Proof. First note that we can rewrite (77) as a sum over all subsets of qubits, each subset having
a ”weight” equals to the corresponding coefficient, which we want to compute. So we can write
f as

f(q) =

d∑
i=0

∑
Si

D(Si)

i−1∏
j=0

qkj , (83)

where again here, Si = {k0, k1, . . . , ki−1} is a set of i indices, representing a subset of the
qubits, and D(Si) is the corresponding coefficient.

On the other hand, we have the representation of f from (84) with

f(q) =
∑

b∈{0,1}d
C(b)(−1)〈q,b〉. (84)

We expand this formula to turn it into something of the form (83). So we have

f(q) =
∑

b∈{0,1}d
C(b)(−1)〈q,b〉 (85)

=
∑

b∈{0,1}d
C(b)(−1)b0q0+b1q1+···+bd−1qd−1 . (86)

15

Since we have qubits, we can write (−1)qibi = 1− 2qibi. We get

∑
b∈{0,1}d

C(b)(−1)b0q0+b1q1+···+bd−1qd−1 =
∑

b∈{0,1}d
C(b)(1− 2b0q0)(1− 2b1q1) . . . (1− 2bd−1qd−1).

(87)

We can then use a generalized form of the binomial expansion, in the sense that

(1 + y0)(1 + y1) . . . (1 + yd−1) =

d∑
i=0

∑
Si

i−1∏
j=0

ykj , (88)

with Si still a subset of i indices. In our case, we get

∑
b∈{0,1}d

C(b)(1− 2b0q0) . . . (1− 2bd−1qd−1) =
∑

b∈{0,1}d
C(b)

d∑
i=0

∑
Si

i−1∏
j=0

(−2qkj bkj) (89)

=

d∑
i=0

∑
Si

(−2)i
∑

b∈{0,1}d
C(b)

i−1∏
j=0

(qkj bkj) (90)

=

d∑
i=0

∑
Si

(−2)i
∑

b∈{0,1}d
C(b)

i−1∏
j=0

bkj

 i−1∏
j=0

qkj

(91)

=

d∑
i=0

∑
Si

D(Si)

i−1∏
j=0

qkj , (92)

where we defined D(Si) = (−2)i
∑

b∈{0,1}d C(b)
∏i−1
j=0 bkj .

In summary, the implementation of a function f can be done using controlled Y rotations
using the following steps:

1. Compute the coefficients C(b) using equation (81).

2. Compute the coefficients D(Si) corresponding to some subset of size i of the qubits using
the previously computed coefficients C through the formula of lemma 6.2, for all i.

3. Each subset of qubits of size i has now a corresponding coefficient D(Si) for all i. So in
the circuit, use a RY (D(Si)) gate controlled by qubits with indices in Si and do this for
all subset Si and for all i.

6.3 Gate Analysis

We present here an analysis for the number of gates needed to realize the controlled Y rotations.
First, we present a way to build arbitrary multi-controlled Y rotation gates, and then assuming
a set of basic gates at our disposal, we describe the number of such gates needed for computing
exactly an arbitrary function of d bits.

6.3.1 Implementation of multi-controlled Y rotations

In this section we present circuits to build controlled Y rotation. There is in fact a compact
recursive construction of such circuits, which we decide to present here.

The circuit for a single control qubit is shown in figure 4. The basic idea comes from the
fact that XRY (θ)X = RY (−θ). As such, when the control qubit is set to |0〉, the we apply two

16

• • •
=

RY (θ) RY (−θ/2) RY (θ/2)

Figure 4: Diagram of circuit for a controlled Y rotation

rotations of opposite angles, resulting in no rotation at all, and when the control qubit is set to
|0〉, we will apply two rotations of angle θ/2, resulting in an overall rotation of θ.

The circuit can be simply extended to have multiple qubits as control. We depict the case
d = 2 controls in Figure 5 and the general case in Figure 6.

• • •
• = • • • •

RY (θ) RY (−θ/2) RY (θ/2)

Figure 5: Diagram of circuit for a 2-controlled Y rotation

• • •
• • • • •
...

= ...
...

...
...

• • • • •
RY (θ) RY (−θ/2) RY (θ/2)

Figure 6: Circuit for a d-controlled Y rotation

Observe that a rotation with d controls involves two rotations with d − 1 controls together
with two d-controlled Toffoli gates. Implementing the d-controlled gate recursively from the
basic circuit would give us exponentially many gates in d, but we can do much better than that
provided we use ”work” qubits. Indeed, as presented in Figure 4.10 in [10] and shown here in
Figure 7, the number of gates is greatly reduced.

We make the assumption that adding those extra qubits is not a problem, and continue with
the complexity analysis.

6.3.2 Analysis

Suppose that the set of gates that can be used is {CNOT,Toffoli, RY (·)}. Then we have the
following:

Lemma 6.3. One needs O(d) Toffoli gates, O(1) CNOTs, O(1) RY (·) gates, and d−1 additional
”work” qubits to implement a d-controlled Y rotation.

Proof. From Figure 4, the use of 2 CNOTs and 2 RY (·) gates is needed to build a controlled Y
rotation. For an arbitrary d-controlled rotation, following the construction from [10], we need
d − 1 additional qubits, 2(d − 1) Toffoli gates, and the 2 CNOTs and 2 RY (·) for the simple
controlled Y .

Now, for arbitrary functions, recall from section 6.2 that in the worst-case, we need rotations
for each combination of the input qubits. Before deriving results about the complexity, we state
a useful lemma.

Lemma 6.4. Let d be a positive integer. Then
∑d
i=0

(
d
i

)
= 2d and

∑d
i=0

(
d
i

)
i = d2d−1.

Proof. Write the binomial expansion formula

(x+ 1)d =

d∑
i=0

(
d

i

)
xi. (93)

17

Figure 7: Circuit for an arbitrary 5-controlled U operation

Replacing x by 1 gives us the first result. For the second one, differentiating (93) with respect
to x on both sides gives

d(x+ 1)d−1 =

d∑
i=0

(
d

i

)
ixi−1. (94)

Once again, setting x = 1 proves the equality.

Lemma 6.5. One needs O(d2d) Toffoli gates, O(2d+1) CNOTs, O(2d+1) RY (·) gates, and d−1
additional ”work” qubits to implement exactly an arbitrary function of d qubits.

Proof. There are
(
d
i

)
combination of i qubits from a set of d qubits. This gives us the number

of rotations controlled by i qubits needed for the implementation of a function of d qubits. We
need then to sum on i from 0 to d. We get from lemma 6.3

Overall complexity =

d∑
i=0

(
d

i

)
· Complexity(i-controlled Y rotation) (95)

=

d∑
i=0

(
d

i

)
· (2(i− 1)Toffoli + 2CNOTs + 2RY (·)) . (96)

We thus find the answer for the different gates in our set separatly. For the Toffoli gates, the
exact number needed is

d∑
i=0

(
d

i

)
2(i− 1) =

d∑
i=0

(
d

i

)
i− 2

d∑
i=0

(
d

i

)
= d2d−1 − 2d = 2d−1(d− 2). (97)

For the CNOTs and RY (·), the exact number needed is

d∑
i=0

(
d

i

)
2 = 2 · 2d = 2d+1. (98)

Note that since the rotations are performed one after the other, we can always reuse the
same d− 1 ”work” qubits.

18

This seems like bad news if we want to compute the function exactly. However one could
be content with the use of a polynomial of lower degree that approximate the function. In that
case, the complexity slightly changes and we get the following.

Lemma 6.6. One needs O(kdk) Toffoli gates, O(dk) CNOTs, O(dk) RY (·) gates, and d − 1
additional ”work” qubits to implement a polynomial of degree k on d qubits.

Before describing the proof, we state a useful lemma.

Lemma 6.7. Let d, k be positive integers such that k ≤ d. Then
∑k
i=0

(
d
i

)
= O(dk) and∑k

i=0

(
d
i

)
i = O(kdk).

Proof. We use the fact that
(
d
i

)
≤ di, As such, we get

k∑
i=0

(
d

i

)
≤

k∑
i=0

di =
dk+1 − 1

d− 1
= O(dk) (99)

for the first result.
Differentiating with respect to d we have

k∑
i=0

di−1i = O(kdk−1). (100)

So we find the second result by using

k∑
i=0

dii = d

k∑
i=0

di−1i = O(kdk). (101)

Using these, we can prove lemma 6.6.

Proof. Here, we note that the idea is the same as for computing the complexity for an arbitrary
function, except that since the degree of the polynomial is k, there are no combinations of more
than k qubits. So just as before, this involves a summation, but here it is truncated. That is,
we have

Overall complexity =

k∑
i=0

(
d

i

)
· Complexity(i-controlled Y rotation) (102)

=

k∑
i=0

(
d

i

)
· (2(i− 1)Toffoli + 2CNOTs + 2RY (·)) . (103)

We thus find the answer for the different gates in our set separatly. For the Toffoli gates, the
exact number needed is

k∑
i=0

(
d

i

)
2(i− 1) =

k∑
i=0

(
d

i

)
i− 2

k∑
i=0

(
d

i

)
= O(kdk) (104)

For the CNOTs and RY (·), the exact number needed is

k∑
i=0

(
d

i

)
2 = O(dk). (105)

Note that since the rotations are performed one after the other, we can always reuse the
same d− 1 ”work” qubits.

19

One important note to make here, is that if we want to perform all computations exactly
throughout the HHL algorithm, there is a hidden exponential complexity. In the overall algo-
rithm, there is a dependency on ε which corresponds to the precision we want. But this ε should
be chosen so as to make the Quantum Phase Estimation more accurate, and for that one needs
to increase the number of qubits (we called it d in this text) used to represent the eigenvalues
of A.

The important point is that the complexity of the controlled rotations depends on d, and
is in fact exponential in d as proved in lemma 6.5 for an exact computation of 2 arcsin(C/x).
Hence, one should keep in mind these considerations when observing the overall complexity of
the HHL algorithm.

7 Application of HHL to Various Problems

We now turn to the subject of how the HHL algorithm can be used to solve linear systems of
equations in order to solve various problems. It turns out that for some specific matrices, solving
the system using the HHL algorithm can allow us to solve the same system but considering it
in a finite field for example.

7.1 Solving the XORSAT Problem and QLSP over Finite Fields

We present here how to solve a specific problem of satisfiability using the HHL algorithm. We
start by giving some definitions.

Definition 7.1 (Boolean matrices). A boolean matrix is a matrix whose elements belong to
{0, 1}.

Definition 7.2 (XOR Satisfiability Problem). The XOR satisfiability (XORSAT) problem is the
problem of determining whether there exists an assignment of n Boolean variables that satisfy m
exclusive XOR clauses, where each clause constrains a subset of the variables.

Note that the XORSAT problem can be viewed as a system of linear equations mod 2 on
the field F2, and as such can be solved using Gaussian elimination with O(n3) complexity. Of
course, one can wonder whether it is possible to achieve a better runtime, and we show here that
in some cases, on can solve the XORSAT using the HHL algorithm.

As explained just before, the XORSAT problem can expressed as Ax = b, where A ∈ Fm×n2

and x,b ∈ Fn2 . Can we get a solution valid in F2 but solving the problem in C, like in the setting
of the HHL algorithm? If the answer is yes, then this would mean that we could use the HHL
algorithm to solve the problem, and get the corresponding speedup.

We first go through some examples to get an idea of what relationship there is between
solving a linear system of equations in F2 versus in C.

Example 7.1. Let A be a boolean matrix and b a boolean vector, defined as

A =


1 0 0 1
1 1 0 1
1 0 1 1
1 1 1 0

 ,b =


1
1
1
1



respectively. Solving Ax = b in F2 gives x =


0
1
0
1

, and solving in C gives x =


2
−1
0
−1

, the

same solution. So it seems that here, taking the solution in C mod 2 gives us the corresponding
solution in F2.

20

Example 7.2. Let A be a boolean matrix and b a boolean vector, defined as

A =


1 0 1 0
1 1 0 1
0 1 1 1
0 0 1 1

 ,b =


1
0
0
1



respectively. There is no solution to Ax = b in F2, while solving in C gives x =


1
2
−1
1
2
1
2

.

There are cases where even though there is a solution in C, this will be of no help in F2.

The corollary below explains the relationship between solving a linear system of equations
in C compared to F2 where the matrix A has boolean entries. This is derived from a stronger
lemma, which we prove next.

Corollary 7.0.1. Let A ∈ Cn×n be a boolean matrix and b ∈ Cn a boolean vector such that
det(A) 6= 0. If det(A) is odd, then we can get a solution to the same problem, but considering
the operations of addition and multiplication over F2, i.e., we can find x ∈ Fn2 such that Ax = b.

We state the more general form of this result in the following lemma.

Lemma 7.1. Let A ∈ Cn×n be matrix and b ∈ Cn a vector both with entries restricted to some
finite field Fp ⊂ C, and such that det(A) mod p 6= 0. Then we can get a solution to the same
problem, but considering the operations of addition and multiplication over Fp, i.e., we can find
x ∈ Fnp such that Ax = b.

In particular, when det(A) = 1, the solution in Fp is given by taking the solution x to the
problem in C directly.

Before proving this lemma we will prove some useful statements.

Lemma 7.2. Let A ∈ Cn×n be a matrix with elements restricted to some finite field Fp ⊂ C.
Then its determinant is an integer, i.e., det(A) ∈ Z.

Proof. Recall Laplace’s formula for the computation of the determinant of a matrix:

det(A) =

n∑
j=1

(−1)i+jAijMij (106)

for a fixed 1 ≤ i ≤ n. Here, Mij corresponds to the determinant of the submatrix of A
obtained by removing the ith line and jth column, which is also a boolean matrix. Note that
for a 2 × 2 matrix ∈ Fp, its determinant can only be an integer since the operation consists in
mutliplying and subtracting integers (since the elements are restricted to Fp). By induction and
using Laplace’s formula, we get that for an arbitrary n × n boolean matrix, its determinant is
an integer.

This lemma gives rise to the following corollary.

Corollary 7.2.1. Let A ∈ Cn×n be a boolean matrix. Then its determinant is an integer, i.e.,
det(A) ∈ Z.

Lemma 7.3. Let A ∈ Cn×n be matrix and b ∈ Cn a vector both with entries restricted to some
finite field Fp ⊂ C, and such that det(A) mod p 6= 0. Then the solution to Ax = b is such that
x ∈ Qn.

21

Proof. Since the determinant in non-zero, we can solve the system using Cramer’s rule. So we

find that the ith component of the solution vector x is given by xi = det(Ai)
det(A) , where Ai is the

matrix obtained by replacing the ith column of A by the vector b. Note that both A and Ai are
boolean matrices. As such, from Lemma 7.2, we get that det(Ai) ∈ Z and det(A) ∈ Z. Hence,
x ∈ Qn.

Once again we get a corresponding corollary for boolean matrices.

Corollary 7.3.1. Let A ∈ Cn×n be a boolean matrix such that det(A) 6= 0, and let b ∈ Cn a
boolean vector. Then the solution to Ax = b is such that x ∈ Qn.

We can now prove Lemma 7.1 using the lemmas stated above.

Proof. (Lemma 7.0.1) Consider the ith of the equation in the linear system. That is

n∑
j=1

Aijxi = bi. (107)

By Lemma 7.3, we can write it as

n∑
j=1

Aij
det(Ai)

det(A)
= bi ⇔

n∑
j=1

Aijdet(Ai) = det(A)bi. (108)

Note that in this last equation, both the left-hand and right-hand sides are integers. We can
thus take each side mod p, and we get

n∑
j=1

Aijdet(Ai) mod p = det(A)bi mod p. (109)

But since Aij and bi are both elements of Fp, we can see the sum on the left-hand side also
mod p and moreover, we have

n∑
j=1

Aij(det(Ai) mod p) = (det(A) mod p)bi. (110)

If det(A) mod p 6= 0, we have that the system

n∑
j=1

Aij
det(Ai) mod p

det(A) mod p
= bi. (111)

is a linear system in Fp, and we see that the solution is given by x̃i = det(Ai) mod p

det(A) mod p
∈ Fp.

As such, given the solution x = det(Ai)
det(A) to the problem in C, we can recover the one in Fp, call

it x̃ by computing x̃i = (xi·det(A)) mod p

det(A) mod p
for all entries i of the vectors, and where the division

is in Fp.
So in the specific case where det(A) = 1, the solution to the problem in C coincide with the

solution in Fp.

One can observe from the proof that the only value needed to get the solution of the system
in Fp is the determinant of A. This might be hard to compute in general, so this method is not
appropriate for every matrix. In the special case where det(A) = 1 however, solving the system
using the HHL algorithm will give us the answer to the problem in any Fp.

22

8 Implementation

We describe an implementation for a specific case using the Qiskit software development frame-
work. All the code can be found at https://github.com/Adirlou/epfl master semester project. In
our implementation, we use some of what is presented in [17, 18], which describe implementa-
tions of the HHL algorithm on specific 2 × 2 and 4 × 4 matrices. However, they choose very
specific matrices and do multiple approximations in order to reduce the circuit size.

Here, we propose an exact implementation for a particular 2× 2 matrix.
We choose

A =

[
4 1
1 4

]
,b =

[
1
0

]
.

Solving using usual methods gives us as solution x =

[
4/15
−1/15

]
. Since here, we just want to do

a simple simulation, we will choose the number of qubits for the register holding the eigenvalues
by finding them first using regular methods. Of course, for a completely proper implementation,
one should choose this number according to the maximum value that an eigenvalue of A can
take. In our case the eigenvalues are found to be λ1 = 3 and λ1 = 5. As such, 3 bits are sufficient
to represent them, and that is why we chose this number in our implementation.

We show here the different steps used to build the corresponding quantum circuit. To remind
the reader of how the circuit looks like, we describe a simplified version of it in figure 8. The
circuit is composed of the following qubits: |b〉 corresponds to b, the |ci〉’s hold the eigenvalues,
and |a〉 is the ancilla qubit which is used when performing the controlled Y rotations.

It starts by performing the Quantum Phase estimation (the Quantum Fourier Transform is
denoted by FT −1). Then the controlled rotations are represented by the box C −RY , and the
actual circuit can be found in figure 9. Finally we perform the inverse of the Quantum Phase
Estimation, and measure the ancilla qubit.

|a〉 = |0〉

C −RY
|c2〉 = |0〉 •

FT −1 FT

•

|c1〉 = |0〉 • •

|c0〉 = |0〉 • •

|b〉 = |0〉 eiAt/8 eiAt/4 eiAt/2 e−iAt/2 e−iAt/4 e−iAt/8

Figure 8: Diagram of circuit for the implementation of the HHL algorithm

8.1 Quantum Phase Estimation

The first step is to perform the Quantum Phase Estimation procedure. As shown on the circuit
in figure 8, we will need to compute the values eiAt/2

i

for i = 1, 2, 3. Here, we use tools such as
Wolfram Alpha to compute the matrix exponential. Also, note that here, we take t = 2π. We
get

eiAt/2 =

[
−1 0
0 −1

]
, eiAt/4 =

[
0 i
i 0

]
, eiAt/8 =

[
−1/
√

2 −i/
√

2

−i/
√

2 −1/
√

2

]
, (112)

23

|a〉 RY (2.893) RY (1.696) RY (0.246) RY (−0.409) RY (3.543)

|c2〉 • • •
|c1〉 • • •
|c0〉 • •

Figure 9: Diagram of circuit with controlled Y rotations for equation (115)

and using the fact thatRX(θ) =

[
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

]
andRZ(θ) =

[
exp(−iθ/2) 0

0 exp(iθ/2)

]
we have

eiAt/2 = RZ(2π), eiAt/4 = RX(−π), eiAt/8 = RX(3π/2), (113)

so the matrix exponentials are just simple X and Z rotations.

8.2 Controlled Y Rotations

In this part of the circuit, we would like to perform Y rotations on the ancilla qubit in order to
implement a mapping of the form

|λ̃〉 |0〉 7→ |λ̃〉

√1− C2

λ̃2
|0〉+

C

λ̃
|1〉

 . (114)

Recall that in order to do this, we had to implement the function f(x) = 2 arcsin(C/x). We
first need to make a choice for C but recall that we need to restrict it so that C ≤ mini |λi|,
where λi are the eigenvalues of A. So here we take C = mini |λi| = 3.

Here we used the following representation for f , which needs to return correct values for
values {3, 4, 5, 6, 7}. Indeed, we know the smallest eigenvalue which is 3 and we have 3 qubits,
so the highest value we must be able to compute is 7. A possible polynomial representation of
f for these inputs is given by

f(c0, c1, c2) = 2.893c1 + 1.696c2 + 0.246c0c1 − 0.409c0c2 + 3.543c1c2 (115)

which can be found using ideas presented in section 6.2. Translating this to controlled Y
rotations, it gives rise to the circuit depicted in figure 9.

8.3 Results

We present here the results obtained when using the Qiskit package. Recall that the solution of

the problem is given by x =

[
4/15
−1/15

]
. However the quantum circuit will output a unit length

vector, so |x〉 =

[
4/
√

17

−1/
√

17

]
.

8.3.1 Simulator

As expected, from our implementation which should be exact, we are able to compute the
amplitudes of the final quantum states, which are depicted in figure 10. Recall that before
measuring the ancilla bit, we are in state

N−1∑
j=0

βj |0〉 |uj〉

(√
1− C2

λ2j
|0〉+

C

λj
|1〉

)
. (116)

24

Figure 10: Real part of the amplitudes for all possible final states with simulator

Figure 10 confirms this in the sense that amplitudes greater than zero only for states such that
the register containing the eigenvalues is at |000〉. Then depending on the value of the ancilla, we
have different possible amplitudes for the bit representing |x〉. What we see is that conditioned
on the ancilla bit being one, we have a positive amplitude for |x〉 being zero and a negative
one for |x〉 being one. This is explained by recalling that the output of the quantum circuit,

conditioned on the ancilla qubit being one, is |x〉 =

[
4/
√

17

1/
√

17

]
. In fact, with the conditioning on

the ancilla qubit, we retrieve the exact answer in our implementation.
We can also view the result of the circuit in terms of the statistics of the measurements.

In that case, we should have good estimations of the probabilities. In our case, again with

the conditioning on the ancilla, we should have probability
∣∣4/√17

∣∣2 ≈ 0.941 of measuring 0

for |x〉 and probability
∣∣−1/

√
17
∣∣2 ≈ 0.059 of measuring 1. Figure 11 shows the results of the

measurements of the ancilla qubit and the qubit supposed to contain |x〉.

Figure 11: Statistics of measurements when measuring ancilla qubit (top one) and the input
qubit (bottom one) with simulator

Once again, rescaling after conditioning on the ancilla qubit being one, we get an estimated
probability of 0.641/(0.641 + 0.04) ≈ 0.941 of measuring 0 for |x〉 and an estimated probability
of 0.04/(0.641 + 0.04) ≈ 0.059 of measuring 1, as expected.

25

8.3.2 IBM Quantum Computers

The results we obtain on the IBM quantum computers (more precisely on the one called
ibmq essex) are much less precise than on the simulator. This is due to the relatively large
depth of the circuit in terms of gates, which incurs a lot of noise that can clearly be seen on the
results.

Figure 12: Statistics of measurements when measuring ancilla qubit (top one) and the input
qubit (bottom one) with quantum computer

We can compute the probabilities when conditioning on the ancilla qubit being one, and we
have estimated probability 0.198/(0.198 + 0.181) ≈ 0.522 of measuring 0 for |x〉 and probability
0.81/(0.198 + 0.181) ≈ 0.478 of measuring 1, which are not close at all to the desired result.

In fact this can be explained by only computing the Quantum Phase estimation part of the
algorithm. Here most of the amplitudes should be on λ1 = 3 and λ2 = 5. This is the case as
can be observed in figure 13, however we note that there is also quite a lot of probability on
wrong values. This step of the HHL being critical, it is not a surprise that the noise corrupts
the results at the end of circuit.

Figure 13: Statistics of measurements when measuring the result of the QPE with quantum
computer

We propose then to solve the same problem, but this time using only two bits to hold the
eigenvalues in order to make the circuit less deep. This results in an imprecise answer even in

26

the simulator, but it is interesting to see if the quantum computers can do better in that case.
However, here too, the output of the circuit on the quantum computers give noisy results. This
can be seen by only computing the QPE and Inverse QPE and checking if most of the probability
is on state |00〉. Figure 14 shows these results, and even though we have quite a lot of probability
on the desired state, there is already much noise on other states. Thus when considering the full
HHL circuit, that is including the controlled rotations, the obtained results are still too noisy to
give useful insights.

Figure 14: Statistics of measurements when measuring the result of the QPE and Inverse QPE
with 2 qubits with quantum computer

It is good to note that when using IBM’s software, only the circuit is described, however the
way it is actually run depends on the quantum computer used, and this translation step is done
automatically. So one could potentially get much more reliable results by studying the topology
of the quantum computer used, designing a circuit that takes advantage of it, and manually
taking care of running it in an optimal way for that quantum computer.

9 Conclusion

In this project we presented and reviewed the HHL algorithm used to solve linear systems of
equations. In the first sections, we explained what the three main procedures are: Quantum
Phase Estimation, Hamiltonian Simulation and Controlled Rotations. More precisely, we saw
how the Quantum Phase Estimation affects the probability of success and precision of the whole
algorithm, and some possibilities for performing an efficient Hamiltonian simulation.

Section 6 was dedicated to the controlled rotations, which required a careful analysis. We
observed how they can be used to compute arbitrary functions of the qubits, using tools such
as the Walsh Transform. Moreover, after describing how to implement such circuits, our various
analyses showed that an exact computation may induce an exponential complexity in the number
of gates used, which was also dependent on how the Quantum Phase Estimation was performed.

In section 7, we saw how one could use the HHL to solve problems such as solving a system
of linear equations in finite fields for some specific cases.

Finally, the implementation presented in section 8 gave insights about the correctness of the
HHL algorithm. When simulating, we always obtained the expected results. However, when
using actual quantum computers, things got more complicated as it became hard to control the
noise when there are many gates. Nevertheless, for simple cases, it confirmed that using quantum
effects can help computationally. As time goes, quantum computers keep getting better, but
there is still a lot to be discovered and improved in order to have reliable quantum systems.

27

Acknowledgments

I would like to first thank Nicolas Macris for helping me throughout the project. It was a lot of
work and sessions to get a good understanding of the algorithm, and he helped me push myself
to better understand the core concepts. I would also like to acknowledge the Quantum Com-
puting Association at EPFL, who organized many interesting events and deepened my interest
in quantum computing. Finally, I acknowledge the support of the Qiskit software development
framework for giving the possibility to simulate quantum circuits.

References

[1] E. Deotto E. Farhi S. Gutmann D. A. Spielman A. M. Childs, R. Cleve. Exponential
algorithmic speedup by quantum walk. arXiv:quant-ph/0209131, 2002.

[2] R. D. Somma A. M. Childs, R. Kothari. Quantum algorithm for systems of linear equations
with exponentially improved dependence on precision. arXiv:1511.02306 [quant-ph], 2017.

[3] S. Lloyd A. W. Harrow, A. Hassidim. Quantum algorithm for solving linear systems of
equations. arXiv:0811.3171 [quant-ph], 2009.

[4] G. R. Ahokas. Improved algorithms for approximate quantum fourier transforms and sparse
hamiltonian simulations. University of Calgary, 2004.

[5] A. Ambainis. Variable time amplitude amplification and a faster quantum algorithm for
solving systems of linear equations. arXiv:1010.4458 [quant-ph], 2010.

[6] P. Mountney S. Severini N. Usher L. Wossnig D. Dervovic, M. Herbster. Quantum linear
systems algorithms: a primer. arXiv:1802.08227 [quant-ph], 2018.

[7] M. Mosca A. Tapp G. Brassard, P. Hoyer. Quantum amplitude amplification and estimation.
arXiv:quant-ph/0005055, 2000.

[8] U. S. R. Murty J. A. Bondy. Graph Theory with Applications. The Macmillan Press Ltd.,
1976.

[9] S. Lloyd. Universal quantum simulators. Science 273, 1073, 1996.

[10] I. L. Chuang M. A. Nilsen. Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge, 2010.

[11] Kaisa Nyberg. T-79.5501 lecture notes: Cryptology, 2007. URL:
http://www.tcs.hut.fi/Studies/T-79.5501/2007SPR/lectures/boolean.pdf.

[12] C. Macchiavello M. Mosca R. Cleve, A. Ekert. Quantum algorithms revisited. arXiv:quant-
ph/9708016, 1997.

[13] S. Dutta S. Roy B. K. Behera P. K. Panigrahi S. Dutta, A. Suau. Demonstration of a
quantum circuit design methodology for multiple regression. arXiv:1811.01726 [quant-ph],
2018.

[14] D. J. Egger S. Woerner. Quantum risk analysis. arXiv:1806.06893 [quant-ph], 2018.

[15] A. C. Vásquez. Quantum algorithm for solving tri-diagonal linear systems of equations.
ETH Zürich, 2018.

[16] M. M. Wilde. Quantum Information Theory. Cambridge University Press, Cambridge,
2013.

[17] S. Frankel S. Kais Y. Cao, A. Daskin. Quantum circuit design for solving linear systems of
equations. arXiv:1110.2232 [quant-ph], 2011.

[18] S. Frankel S. Kais Y. Cao, A. Daskin. Quantum circuits for solving linear systems of
equations. arXiv:1110.2232 [quant-ph], 2013.

28

