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Abstract

Many discrete optimization problems can be mapped onto Ising spin-glass models, which gives
a general framework to solve them. However, it is well-known that such systems can be hard
to study, especially when frustration is present, with most results coming from numerical
simulations. It has been shown that cluster Monte-Carlo algorithms are particularly efficient
for simulating ferromagnetic Ising models, but results on more generic statistical mechanical
models are not conclusive. Here we compare multiple of these algorithms and dive deeper into
the analysis of the Houdayer algorithm, leading to an improved version which can yield better
convergence to equilibrium. We also argue that this proposed method can be used to improve
the sampling of optimal solutions when many of them exist, and this can be further tweaked
to allow for better sampling of feasible solutions in constrained problems. We illustrate the
various benefits of using our extended cluster move through experiments involving multiple
graph topologies, in particular we look at a discrete optimization problem arising from industry.
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1 Introduction

Discrete optimization problems arise across a large number of disciplines, many of which fit into
the Ising model, or equivalently, into a quadratic unconstrained binary optimization (QUBO)
problem. Such optimization formulations emerge in a number of fields such as machine learning
[1], logistics [2], chemistry [3], and biology [4]. Thus, being able to solve these problems is of
importance not only for research purposes, but it is also relevant in industrial applications.

With the increase in computing power during the last decades, the use of well-known Monte-
Carlo methods like the Metropolis-Hastings algorithm [5], [6] to tackle such problems has proven
to be effective, showing the ability to search efficiently even through large spaces of solutions.
But even then, the exponential growth in computing power that took place until today is not
expected to continue indefinitely [7], which calls for new techniques especially when one is
interested to solve NP-hard combinatorial optimization problems.

With the advent of quantum computing, new optimization techniques have been introduced
[8]–[11], some of which may give speedups over their classical counterparts in practice. For
example, it has been proposed that quantum tunneling may give quantum computers the
power to solve some non-convex optimization problems faster than classical computer can [12].
Nevertheless, it remains an open question how ubiquitous quantum speed-ups will turn out to
be in real-world settings. At the same time, other algorithms referred to as quantum-inspired
(or physics-inspired) have emerged in an attempt to simulate quantum effects in classical
computations [13]. The Markov chain Monte-Carlo methods considered in this project mostly
fall into this category, and they attempt to explore large solution spaces in novel ways.

In particular, a procedure introduced by Houdayer [14] has been used recently used to develop
an algorithm using parallel tempering with isoenergetic cluster moves, which is regarded as
one of the most efficient for finding low energy states of Ising spin-glass models [15]. Based on
similar ideas with the Houdayer move, in this thesis a new Monte-Carlo move which extends it
is developed to allow for even further exploration of the solution space when combined with
heuristic algorithms like simulated annealing [16] or parallel tempering [17]. The advantage
is that the proposed Monte-Carlo update can be used in combination with other algorithms,
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Chapter 1 Introduction

resulting for example in new heuristic schemes to improve the sampling of low-energy solutions
in difficult optimization problems, or to generate feasible solutions in constrained problems.

In order to test the efficiency of the methods, benchmarking is a crucial tool that allows to
easily compare and choose which scheme is most relevant [18]. Attributes such as running time,
precision to which an optimal solution is reached, and number of optimal solutions attained can
completely affect which methods are most adapted to the task. We benchmark algorithms like
simulated annealing and parallel tempering and compare their behavior when the Houdayer
cluster update or its extensions are used. The experiments performed also test how capable
the new method for improved sampling is on canonical problems like Maximum Cut [19]. A
scheduling-type problem that arises in a range of industrial settings is also studied in detail,
employing the methods developed in this work. In particular we show through numerical
simulations that many feasible solutions of this constrained problem can be found, permitting
further optimization on this subset of solutions.

Part of the project is also dedicated to get a deeper understanding of the theoretical underpin-
nings for the convergence of the methods studied in the context of the Ising spin-glass model.
This is related to the concept of mixing time [20], which has been studied for both local [21]–[23]
and non-local Monte-Carlo updates [24], [25]. However for the Houdayer cluster move and its
extended version, the reasons behind their efficiency remain yet unknown, and this is where
some partial theoretical results can also lead to a more informed development. We study the
eigenvalues of the transition matrices induced by the algorithms chosen since they partially
determine how fast the stochastic processes reach their equilibrium distributions.

This project contributes in multiple ways to the improvement of existing state-of-the-art
algorithms that are used in the simulation of Ising spin-glass models, as well as to the development
of new schemes to improve the optimization of hard combinatorial problems. Chapter 2 gives a
review of the fundamentals about sampling and optimization and how this relates to the Ising
model. In chapter 3, the topic of Markov chain Monte-Carlo is introduced, showing various
known algorithms to solve Ising systems and how they compare with each other. In chapter 4,
we build on the knowledge of existing methods to design a new cluster Monte-Carlo move. In
particular, we show how this novel scheme can be used in combination with some heuristics to
improve the sampling of low-energy solutions. We study the performance of those in the context
of an optimization problem arising from industry. Next, chapter 5 discusses the convergence of
the algorithms studied in terms of mixing time in order to get a more theoretical understanding
of their behavior. Finally, a summary is given in chapter 6 together with the general trends
observed. Some possible future directions are highlighted, concluding the report.

1.1 About the Company

Entropica Labs is a Singapore-based company, spin-off of Singapore’s Centre for Quantum
Technologies (National University of Singapore), founded in 2018 by Tommaso Demmarie and
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Ewan Munro. The company strives to create algorithms, software tools, methods and models
to make quantum computers useful. The current focus of Entropica is quantum optimization
and machine learning, supporting enterprise customers to understand and integrate quantum
computing. In particular, solving hard optimization problems using both quantum and classical
techniques is part of Entropica’s expertise.
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2 Preliminaries

2.1 The Ising Model

2.1.1 Definition and Link to Quadratic Unconstrained Binary Optimization

In this section, we present two models, the Ising and the Quadratic Unconstrained Binary
Optimization (QUBO) models, used to represent a large number of optimization problems such
as Maximum Cut, Number Partitioning, Graph Coloring and more [26]. We are interested in
these in particular because only in this setting the techniques developed in this project can be
applied. We define those models more formally below.

Definition 2.1.1 (Ising Model). Let G = (V,E) be a graph. To each vertex v ∈ V (also called
"site"), we attach a "spin" σv which can take values in {−1, 1}. This defines a state space S
which is made of the spin assignments σ = (σ1, . . . , σ|V |) ∈ {−1, 1}|V |, so that S = {−1, 1}|V |.
Moreover, one can define interactions between the spins through a function H : S → R
called the Hamiltonian which represents the energy of a spin configuration. It takes the form
H(σ) = −∑(v,w)∈E Jvwσvσw −

∑
v∈V hvσv, where Jvw, hv ∈ R.

The Ising model was initially presented as a mathematical model for ferromagnetism [27], where
when neighboring spin values agree they have lower energy than when the values disagree, which
happens when we have Jij > 0 ∀i, j. Another simplification that is often done is to not consider
the linear part of the Hamiltonian, which is supposed to represent an external field interacting
with the system, i.e., hi = 0 ∀i. In general, the ferromagnetic model refers to the model when
the weights are such that Jij > 0 ∀i, j and hi = 0 ∀i, while we use the term spin-glass model
[28] when the weights are arbitrary, i.e., Jij ∈ R ∀i, j and hi ∈ R ∀i. However here, we often
restrict to the case hi = 0 ∀i.

Such systems are not in isolation in the real-world, but rather in an environment which also
interacts with the spins in the system. For example the state of a system depends on both the
energy (given by H) and the ambient temperature. How this precisely works is made formal by
thermodynamics [29] and in particular, the third law of thermodynamics states that a system

5



Chapter 2 Preliminaries

at zero temperature is in a ground state, which is defined as a state which has lowest energy.
Thus we can define our goal to be to find the configurations of spins σ∗ which leads to the
lowest level of energy, i.e., we want to compute σ∗ = minσ∈{−1,1}n H(σ).

Example 2.1.1 (Ising Lattice). In an Ising lattice, spins are placed on a rectangular grid and
connected to their nearest neighbors. An example is shown in figure 2.1 for a 2 by 3 system.

Figure 2.1 – A 2 by 3 lattice of spins, where spins with value -1 are depicted in black and those
with value 1 in white.

Example 2.1.2 (Number Partitioning). Let C = {c1, c2, . . . , cn} be a finite set of positive
numbers. We wish to find a partition of C into two disjoint subsets A and C \A such that the
sum of the elements in both sets is equal, i.e.

∑
a∈A a = ∑

b∈C\A b.
One can fit this into an Ising formulation by defining the following Hamiltonian:

H(σ) =
(

n∑
i=1

ciσi

)2

=
n∑

i,j=1
cicjσiσj ,

which is of the desired form −
∑
i,j Jijσiσj −

∑
i hiσi of an Ising model, with Jij = −cicj and

hi = 0 ∀i, j ∈ {1, 2, . . . , n}.

Definition 2.1.2 (QUBO Model). Let Q : {0, 1}n → R be a quadratic polynomial of n binary
variables of the form Q(x) = ∑n

i,j=1Qijxixj, where Qij ∈ R.

Again here, we are interested in finding the assignment x∗ which minimizes the function Q,
that is we want to compute x∗ = minx∈{0,1}n Q(x).

Note that for any of the two models, adding a constant term does not alter the structure of the
energy spectrum, and in particular, the lowest energy configurations remain unchanged.

A large number of problems fit into the structure of a quadratic polynomial [26], and in fact
the Ising and QUBO models are equivalent in terms of the problems they can represent.

Lemma 2.1.1. There is a bijection between QUBO problems and Ising models.

Proof. Let H(σ) = −∑(v,w)∈E Jvwσvσw −
∑
v∈V hvσv be the Hamiltonian of some Ising model.

In order to map it to a QUBO formulation, we need to change the range of the variables from

6



Preliminaries Chapter 2

{−1, 1} to {0, 1}, which is achieved by applying the mapping σ 7→ 2x− 1. Denoting by Q(x)
the resulting function, we get

Q(x) = −
∑

(v,w)∈E
Jvw(2xv − 1)(2xw − 1)−

∑
v∈V

hv(2xv − 1)

= −
∑

(v,w)∈E
(4Jvwxvxw − 2Jvwxv − 2Jvwxw + Jvw)−

∑
v∈V

(hv2xv − hv)

= −
∑

(v,w)∈E
(4Jvwxvxw − 2Jvwxvxv − 2Jvwxwxw + Jvw)−

∑
v∈V

(hv2xvxv − hv)

=
∑

(v,w)∈E
(−4Jvwxvxw + 2Jvwxvxv + 2Jvwxwxw) +

∑
v∈V

2hvxvxv

−

 ∑
(v,w)∈E

Jvw +
∑
v∈V

hv


=

n∑
v,w=1

Qvwxvxw + C,

where

Qvw =


−4Jvw, if (v, w) ∈ E∑

(u,w)∈E 2Juw +∑
(v,u) 2Jvu + 2hv, if v = w

0, otherwise.

and

C = −

 ∑
(v,w)∈E

Jvw +
∑
v∈V

hv

 .

Note that this is precisely in the QUBO format defined in definition 2.1.2.

Similarly, we can start from a QUBO problem and apply the mapping x 7→ σ+1
2 to retrieve the

corresponding Hamiltonian, from which we can conclude that the two models are equivalent.

For the remaining of the report, the type of problems that are solved are always expressed in
the form of a quadratic polynomial, and depending on the range of our variables ({−1, 1} or

7
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{0, 1}), we choose either the Ising formulation or the QUBO one.

2.1.2 A Probabilistic View

Another way to look at the Ising model is to ask, what probability distribution can be assigned
to a configuration σ with energy H(σ)? In previous section, we mentioned that the temperature
of the environment should be taken into account, which we do through the use of a parameter T
representing the temperature at which the system is, or more commonly the inverse temperature
β = 1/(kBT ), where kB is the Boltzmann constant.

To choose an adequate probability distribution, one should follow the principle of maximum
entropy which states that if we do not have any constraint about a particular quantity, we should
remain maximally flexible in this aspect when choosing a model while remaining consistent
with quantities that are constrained. This is known as Jaynes’ maximum entropy principle
[30], and it yields a probability measure called the Boltzmann distribution for a certain spin
configuration at inverse temperature β, defined as

µβ(σ) = 1
Zβ

exp (−βH(σ)) ,

where β > 0 and Zβ = ∑
σ∈S exp (−βH(σ)) is the normalization constant.

One can then answer various questions about the system by computing average quantities such
as the total energy of the system H = ∑

σ∈SH(σ)µβ(σ) = Eµβ [H(σ)] or the magnetization
m = (1/|V |)∑σ∈S µβ(σ) (∑v∈V σv) = (1/|V |)Eµβ [∑v∈V σv]. More generally, given a function
f(σ) of the spins, we are interested to compute

Eµβ [f(σ)] =
∑
σ∈S

f(σ)µβ(σ),

the expected value of the function with respect to the probability density µβ.

2.2 Sampling and Optimization

In this section, we review two central topics of this project, sampling and optimization, and how
they relate. In particular we explain how sampling can be used to solve optimization problems.

8
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2.2.1 Sampling

Let S be a sample space and µ : S → [0, 1] a probability measure over this space. The goal
of sampling is to produce elements from S according to µ. By that, we mean that if the
number of samples produced is infinitely large, then the frequency of each element ω ∈ S in
the samples would correspond to µ(ω). That is, denoting our samples by s1, s2, . . . , we want
limn→∞

1
n

∑n
i=1 1{si = ω} = µ(ω) for all ω ∈ S. Similarly, we can formulate the problem as

the following question: how can we pick an element ω ∈ S so that P(ω) = µ(ω)?

Example 2.2.1 (Fair Die). Suppose we are throwing a fair six-sided die. Then we have
S = {1, 2, . . . , 6} and µ(ω) = 1

6 for ω ∈ S.

There exists various sampling techniques including uniform sampling, rejection sampling,
importance sampling, each with their own advantages and disadvantages [31]. One common
issue is that for some of them, one must know µ(i) for all i ∈ S, which may be non-trivial to
compute. We present in chapter 3 methods to alleviate some of these issues.

Example 2.2.2 (Ising Model). Recall from section 2.1.2 that for the Ising model, we are
interested in computing various average quantities of the form

Eµβ [f(σ)] =
∑
σ∈S

f(σ)µβ(σ),

where f : S → R is some function of the spins. One way to do so is by sampling independently
a certain number of spin configurations σ(1),σ(2), . . . ,σ(M) and to compute 1

M

∑M
i=1 f(σ(i))

instead.

By the law of large numbers we have that

1
M

M∑
i=1

f(σ(i)) M→∞−→ Eµβ [f(σ)] almost surely,

so we can hope to find the values of interests by sampling repeatedly. Note however, the
distribution for the Ising model is equal to µβ(σ) = exp(−βH(σ))

Zβ
, and the normalization constant

Zβ = ∑
σ∈S exp (−βH(σ)) can become impossible to compute if the number of spins is large

since the state space has size |S| = 2n. In this case, the methods presented in the next chapter
describe how to perform the sampling without the need to evaluate Zβ.

9
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2.2.2 Optimization of a Function Using Sampling

Let S be a finite set of elements and f : S → R a function to be minimized. To find the minima
of the function, one can solve it by sampling from the distribution

π(i) = 1{i is a global minimum of f}
Z

, (2.1)

where Z = ∑
i∈S 1{i is a global minimum of f} is a normalization constant, which is equal to

the number of global minima of f . Essentially, π is the uniform distribution over the global
minima of f , so that if the sampling is performed correctly, it is ensured we will find one of
the global minima at the end of the process. However, this is simply too difficult under this
form, first because we would need to be able to tell whether some i is a global minimum to
infer 1{i is a global minimum of f}. This could be possible to determine in a neighborhood
around i, but not globally so instead we sample from the Boltzmann distribution

πβ(i) = e−βf(i)

Zβ
,

where β > 0 is a parameter (called the inverse temperature) and Zβ = ∑
i∈S e

−βf(i) is the
normalization constant. With such a distribution, one can observe that is easy to evaluate the
different probabilities as they only depend on the values of the function f . We explain briefly
why this distribution is of particular importance in this context by looking at its behavior as β
goes from 0 to +∞.

When β → 0, we essentially get

lim
β→0

e−βf(i)∑
j∈S e

−βf(j) = e−0·f(i)∑
j∈S e

−0·f(j) = 1∑
j∈S 1 = 1

|S|
,

the uniform distribution over the entire space. So at high temperature (low β), there is as
much randomness as one can get. For other values of β, it is easier to rewrite the Boltzmann
distribution as

πβ(i) = e−βf(i)∑
j∈S e

−βf(j) = e−βf(i)

e−βf(i)+∑
j∈S:j 6=i e

−βf(j) = 1
1 +∑

j∈S:j 6=i e
−β(f(j)−f(i)) .

10
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We see in particular that when β → +∞, we have to check all the terms in the sum in the
denominator individually. There are two cases to consider:

1. If one of the terms is such that f(j)− f(i) < 0 (so i is not a global minimum of f), we
get limβ→+∞ πβ(i) = 1

1+∞ = 0.

2. If all terms are such that f(j) − f(i) > 0 (that is i is the global minimum of f), then
they all vanish to zero, giving limβ→+∞ πβ(i) = 1

1+0 = 1. However, in the case where
there are multiple global minima, some of the terms are such that f(j) − f(i) = 0
which give them a weight of e−β·0 = 1. So overall, if all terms are such that f(j) −
f(i) ≥ 0 (so i is a global minimum of f), we have limβ→+∞ πβ(i) = 1

1+
∑

j 6=i:f(j)=f(i) 1 =
1∑

j∈S 1{j is a global minimum of f} .

We can combine the two cases to yield

lim
β→+∞

πβ(i) = 1{i is a global minimum of f}∑
j∈S 1{j is a global minimum of f}

In fact, we can observe that as β increases, the distribution concentrates around the global
minima, eventually reaching the distribution π from equation 2.1. This is depicted in figure 2.2
in the case of a simple Ising model using the Hamiltonian as function to minimize, which we
recall from section 2.1.1 what we aim to achieve.
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Figure 2.2 – Evolution of the Boltzmann distribution of an Ising model with Hamiltonian H
consisting of a 3 by 3 lattice of spins with bonds being normally distributed around 0 with
variance 1. As β increases, the distribution concentrates on the global minima of H.
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3 Markov Chain Monte-Carlo Meth-
ods

This chapter focuses on Monte-Carlo methods, which are numerical methods used to solve
various problems which have an underlying probabilistic interpretation. In the case of an Ising
model, we highlighted some of the interests as being the evaluation of various expected values.

These methods rely on sampling repeatedly to arrive at a satisfactory answer. Even though a
plethora of such methods exist, we focus in this project on Markov Chain Monte-Carlo (MCMC)
methods and dive more deeply into particular algorithms called "cluster algorithms".

3.1 Markov Chain Monte-Carlo Methods

As explained in previous chapter, sampling can be hard for multifarious reasons. MCMC
methods give us a way to sample from a distribution by constructing a Markov chains which
has as limiting distribution the desired distribution. For a full treatment of Markov chains and
main results in the field, we invite the reader to refer to [20].

Let us first restate the ergodic theorem, which is of central importance in the theory of Markov
chains.

Theorem 3.1.1 (Ergodic Theorem [20]). Let (Xn, n ≥ 0) be an ergodic (aperiodic and
irreducible) finite Markov chain with state space S and transition matrix P (i.e., Pij =
P(Xn = j|Xn−1 = i)). Then it admits a unique limiting and stationary distribution π, i.e.,
∀π(0), limn→∞ π

(0)Pn = π and π = πP .

Moreover, given a function f : S → R and starting from any distribution π(0), then

1
M

M∑
i=1

f(Xi) M→+∞−→ Eπ[f ] almost surely,

,
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where Eπ[f ] = ∑
i∈S f(i)µ(i) is the expected value of f under π.

The ergodic theorem stated in this form informs of two things. First, ergodic Markov chains
always have a limiting distribution which also happens to be the equilibrium distribution. Second,
performing a random walk to get X1, X2, ... is such that when averaging the function values
f(X1), f(X2), ... obtained, the result corresponds approximately to the expected value under
the stationary distribution. The more sampling is done, the more precise the approximation is,
which is similar to the Law of Large Numbers but for Markov chains. Note that this is exactly
what we desire to achieve in the context of the Ising model (see example 2.2.2).

We can now ask the question, given a distribution π from which samples are needed, how to
construct an ergodic Markov chain which has π as its limiting and stationary distribution?

3.1.1 Metropolis-Hastings Algorithm

Let π be some distribution we want to sample from, defined on a finite set S. The Metropolis-
Hastings algorithm [6] is a procedure to construct a Markov chain on S which has π as limiting
distribution. It mainly uses the fact that finding a solution to the equation π = πP is greatly
simplified by imposing detailed balance on the system, i.e., πiPij = πjPji [32]. In fact, a chain
represented by transition matrix P converges to the desired distribution if it is both ergodic
and satisfies detailed balance.

The algorithm is as follows:

1. Select an arbitrary ergodic chain on S, represented by the transition matrix ψ. This chain
proposes moves to explore S.

2. Design acceptance probabilities aij = P(transition i→ j is accepted) = min(1, πjψjiπiψij
).

3. Construct matrix P as: Pij =

ψijaij , if i 6= j

1−∑k 6=i ψikaik, otherwise.

The resulting transition matrix P represents a chain which has the desired limiting distribution
π. By performing a random walk on this chain, we are guaranteed by the ergodic theorem to
get a sample distributed according to π if we do an infinite number of steps. Note also that
when the chain ψ is symmetric, the acceptance probabilities simplify to aij = min(1, πjπi ).

Alternatively, we can describe the Metropolis procedure in a more "online" fashion as follows:

1. Start from some state i ∈ S.

2. Choose a move j ∈ S according to the proposal move given by ψ.

14



Markov Chain Monte-Carlo Methods Chapter 3

3. With probability aij (as defined previously) accept that move and go to state j, otherwise
stay in state i.

4. Go back to 2. and repeat.

Again just as before, if we repeat this process long enough, we can use the state we are in as a
sample since we expect it to be distributed close to distribution π.

Example 3.1.1 (Heat-Bath Dynamics). The simplest dynamics for sampling configurations
of an Ising system with Hamiltonian H at temperature β can be done as follows using the
Metropolis algorithm.

1. Start at some random spin assignment σ ∈ S.

2. Choose a vertex v ∈ V uniformly at random and consider now the assignment σ′, where
σ′v = −σv, i.e., we flip the value of spin at vertex v.

That is, we use as base chain ψ such that ψσ,σ′ =

1/|V |, if σ and σ′ differ by one spin
0, otherwise.

for all σ,σ′ ∈ S.

3. The Metropolis algorithm is used to get the acceptance probabilities given that πβ is the
Boltzmann distribution, yielding aσ,σ′ = min(1, exp(−β (H(σ′)−H(σ))))

4. Go back to 2. and repeat.

It is often called the heat-bath dynamics or also single-flip dynamics.

For simple Ising models such as the ferromagnetic one, using the Heat-Bath dynamics described
in example 3.1.1 works well at high enough temperature. However, once the system starts
getting more complex (with both positive and negative weights for the interactions) or the
temperature is very low, this renders the single-flip strategy inefficient. In particular, when
searching in the vicinity of a state, differences in energy may be large, resulting in the acceptance
probabilities to vanish exponentially fast. So for such systems, especially at low temperatures,
techniques like Heat-Bath fail to find the ground states and get stuck in regions where the
energy is locally minimal.

In general, this is one of the main hurdles when performing optimization. There is a state space
we are searching in order to find a state with lowest value, but the function to optimize might
be complex and contain multiple local minima, making it difficult for local search methods
like Heat-Bath to find the best solution. In general, there is a trade-off of exploration versus
exploitation, that is how much are we willing to explore at the cost of being precise enough,
versus how much we want to locally exploit at the cost of missing the best value. This idea
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Figure 3.1 – A representation of the energy landscape of some Ising system. One notices a local
minimum and the global one, separated by an energy barrier. Algorithms like Heat-Bath, when
close to a local minimum, will tend to get stuck there (red point on the left). So one would like
to develop techniques to overcome such barriers (red arrow) to improve the exploration and get
to the global optimum.

is pictured in figure 3.1, showing that one would like to overcome energy barriers whenever
possible to reach the global minimum.

In the next sections, we present techniques to improve the minimization procedure for the Ising
model, and introduce concepts like parallel tempering and cluster algorithms.

3.2 Parallel Tempering

We argued in previous section that one of the downsides of the single-flip strategy is that close
to a local minimum, the Metropolis acceptance probability can become exponentially small
due to low temperature or high difference in energy in the neighborhood, resulting in "getting
stuck" at a particular configuration. One way to prevent this from happening and to escape
from such minima is to use the Exchange Monte-Carlo method or Parallel Tempering [17].

In this method, multiple spin configurations called replicas are simulated simultaneously at
different temperatures β1 < β2 < · · · < βk. Each replica is simulated independently through
some usual algorithm like the heat-bath one, but after each iteration, replicas between neigh-
boring temperatures can be exchanged, allowing them to move up and down the temperature
space. More precisely, the probability that two replicas σ(1),σ(2) at temperatures βn and βm
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are exchanged is given by

P
(
σ(1) ↔ σ(2)

)
= min

(
1, exp

(
−(βm − βn)

(
H(σ(2))−H(σ(1))

)))
(3.1)

when employing the Metropolis method. For convenience, the replica-exchange is usually
restricted to neighboring temperatures (so m = i + 1 and n = i) because the corresponding
probability of exchange decreases exponentially fast with respect to the difference in temperature
βm − βn. By employing this technique, the convergence to the stationary distribution is
accelerated because a configuration now can move up in temperature space, where Metropolis
moves have a higher chance of being accepted, allowing to escape local minima as shown in
figure 3.1.

In practice, there can be more than just one replica simulated at each temperature. In that case,
after each iteration of the Metropolis algorithm for each replica, those between neighboring
temperatures are first randomly paired, and then exchanged with probability as described in
equation 3.1. As presented here, parallel tempering, although improving the exploration of the
state space, still remains a local update algorithm when using heat-bath to update the replicas
independently. As we will see later on, parallel tempering is often combined with other types of
spin updates, like cluster moves instead of the single-flip which allow for further accelerated
dynamics.

3.3 Cluster Monte-Carlo Algorithms

Earlier, we introduced how to use Metropolis-Hastings algorithm in the context of the Ising
model, yielding the heat-bath (or single-flip) dynamics. However, it is not able to solve complex
instances of Ising spin-glasses, in part due to the fact that it is a local update algorithm. Here,
we hope to explore the state space in a better way by allowing multiple spins to change at the
same time, effectively "teleporting" to somewhere different which is hopefully closer to one of
the global minima. There are then two ways to design new algorithms which use more global
updates. Either by staying in the framework of the Metropolis algorithm, in which case we
aim to propose global moves through the chain ψ (see step 1 of Metropolis in section 3.1.1), or
we can come up with different algorithms. We first present two similar algorithms which are
different from the usual heat-bath dynamics, and then go in more depth into the Houdayer
cluster move.

3.3.1 Swendsen-Wang Algorithm

The Swendsen-Wang algorithm [33] is a cluster Monte-Carlo algorithm as it updates a collection
of spins at every iteration. It works as follows:
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1. Start with a random state σ ∈ S.

2. For each pair of spins that are connected in the graph, (v, w) ∈ E, create a bond between
the two spins with probability 1− e−2βJvw only if the spins are the same, i.e., σv = σw.

3. The bonds created in previous step also created clusters, where a cluster is a set of spins
such that for any two spins in that set, there exist a connected path of bonds joining
them.

After identifying all clusters, one assigns for each cluster the value 1 or -1 uniformly at
random to all spins inside that cluster. Equivalently, one flips each cluster with probability
1/2.

4. Go back to step 2.

It was mainly designed to simulate ferromagnetic models, and thus has difficulties when dealing
with models that are frustrated, like spin-glass models [34].

3.3.2 Wolff Algorithm

Wolff algorithm [33] is another cluster Monte-Carlo algorithm, which is a variation of the
previous one. Similar to the previous algorithm, it is although slightly different in the sense
that it flips only one cluster with probability 1, while the Swendsen-Wang method flips multiple
clusters, each with probability 1/2. Its description is given below.

1. Start with a random state σ ∈ S.

2. Pick a vertex v ∈ V uniformly at random. From there, grow a cluster by considering all
neighbors w of v according to the graph G and include them in the cluster with probability
1 − e−2βJvw only if σv = σw. Then repeat this process recursively for each w that was
added to the cluster. It will eventually terminate, and we are left with a cluster.

3. Flip the value of all spins inside the cluster with probability 1.

4. Go back to step 2.

Note that this is a "rejection-free" algorithm, in the sense that the cluster chosen in step 2 is
always flipped. Wolff’s algorithm gives good result for the ferromagnetic model, but fails for
more general instances just like the Swendsen-Wang algorithm. Part of the reason why they
become inefficient is that at low temperatures, the cluster created encompasses almost all spins,
making the move a trivial one [35].
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3.4 Houdayer Algorithm

3.4.1 Description

The Houdayer procedure [14] is slightly different from other cluster Monte-Carlo algorithms
as it requires to start with a pair of spin configurations at the same temperature instead of
just a single one. As such, in this setup, a state is a pair of independent spin configurations
(σ(1),σ(2)) ∈ S × S and we want to sample from this new state space according to the joint
distribution which is

µβ
(
(σ(1),σ(2))

)
= µβ

(
σ(1)

)
µβ
(
σ(2)

)
= 1
Z

exp
(
−β

(
H(σ(1)) +H(σ(2))

))
,

where β > 0 is the inverse temperature and Z = ∑
τ (1),τ (2)∈S×S exp

(
−β

(
H(τ (1)) +H(τ (2))

))
is the normalization constant.

The move works as follows:

1. Given a pair of independent spin configurations (σ(1),σ(2)), compute the local overlap at
every site. For site i, it is defined as qi = σ

(1)
i σ

(2)
i . Note that this defines two domains, -1

and 1, and one can alternatively write these as qi =

1 if σ(1)
i = σ

(2)
i ,

−1 if σ(1)
i 6= σ

(2)
i .

2. The overlap computed in previous step defines clusters, which are the connected parts
having the same overlap value (we say that two sites are connected if there is an edge
between them, i.e., Jij 6= 0). Select at random a site for which qi = −1 and flip the cluster
to which it belongs in both configurations.

In words, to perform a Houdayer move, one computes the site overlap and then makes a
random choice to select one of the clusters of spins for which their value disagree in the pair of
configurations. Then the corresponding spin values are swapped between the two configurations.
A depiction of the move is displayed in figure 3.2. For the remainder of this report, we refer to
the clusters induced by the local overlap as Houdayer clusters.

3.4.2 Properties

An interesting feature of the Houdayer move is that the sum of energies of the configurations in
the pair stays constant.
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Figure 3.2 – A visual representation of the Houdayer move. It starts with a pair of independent
spin configurations (σ(1),σ(2)) and first compute their local overlap, revealing where spins differ
between the two configurations. One of the sites with overlap value -1 is then chosen uniformly
at random (circled in red) and the corresponding cluster is grown from there (highlighted in
red). After that, the spins in the cluster are swapped between the two replicas, or equivalently
they are flipped, yielding the new pair (σ′(1),σ

′(2)).

Lemma 3.4.1. Let H(σ) = −∑(v,w)∈E Jvwσvσw −
∑
v∈V hvσv be the Hamiltonian of an Ising

model represented by the graph G = (V,E), where the state space is defined as S = {−1, 1}|V |.
Let (σ(1),σ(2)) be a pair of spin configurations and suppose that a Houdayer move results in
the new pair (σ′(1),σ′(2)). Then we have H(σ(1)) +H(σ(2)) = H(σ′(1)) +H(σ′(2)).

Proof. We first split the Hamiltonian into linear and quadratic terms as

Hl(σ) = −
∑
v∈V

hvσv

and

Hq(σ) = −
∑

(v,w)∈E
Jvwσvσw,

so that H(σ) = Hq(σ) +Hl(σ).
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Since the move done is a Houdayer move, we suppose that after computing the site overlap
and selecting a site with overlap value -1, the corresponding chosen cluster to be flipped is
the set C = {i1, i2, . . . , i|C|} (where each element designates a spin). Writing (σ(1),σ(2)) and
(σ′(1),σ′(2)) as the starting and resulting pairs, we prove the lemma by showing that for both
the quadratic and linear part of the Hamiltonian, the property that the sum of the function
values is preserved holds. We mainly use the fact that the Houdayer move swaps the spin values
in C between the two configurations, i.e., σ′(1)

v = σ
(2)
v ∀v ∈ C and σ′(2)

v = σ
(1)
v ∀v ∈ C while

other spin values remain unchanged.

1. Linear part

We want to show that Hl(σ(1)) +Hl(σ(2)) = Hl(σ′(1)) +Hl(σ′(2)).

We have

Hl(σ(1)) +Hl(σ(2))−Hl(σ′(1))−Hl(σ′(2)) = −
∑
v∈V

hv(σ(1)
v + σ(2)

v − σ′(1)
v − σ′(2)

v )

= −
∑
v∈C

hv(σ(1)
v + σ(2)

v − σ′(1)
v − σ′(2)

v )

= −
∑
v∈C

hv(σ(1)
v + σ(2)

v − σ(2)
v − σ(1)

v )

= 0,

where in the second equality we used the fact that for all spins not in the cluster, their
value is unchanged resulting in the corresponding term in the sum to be zero.

2. Quadratic part

In the same way, we want to show Hq(σ(1)) +Hq(σ(2)) = Hq(σ′(1)) +Hq(σ′(2)).

We have

Hq(σ(1)) +Hq(σ(2))−Hq(σ′(1))−Hq(σ′(2))

= −
∑

(v,w)∈E
Jvw

(
σ(1)
v σ(1)

w + σ(2)
v σ(2)

w − σ′(1)
v σ′(1)

w − σ′(2)
v σ′(2)

w

)
= −

∑
(v,w)∈E:
v∈C or w∈C

Jvw
(
σ(1)
v σ(1)

w + σ(2)
v σ(2)

w − σ′(1)
v σ′(1)

w − σ′(2)
v σ′(2)

w

)
,

where again we used that when we consider an interaction involving spins which are
unchanged, the term in the sum is zero. Let us now look at the other terms.

In the case where v, w ∈ C so that both spin values are swapped, then we get
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Jvw(σ(1)
v σ(1)

w + σ(2)
v σ(2)

w − σ′(1)
v σ′(1)

w − σ′(2)
v σ′(2)

w )

= Jvw
(
σ(1)
v σ(1)

w + σ(2)
v σ(2)

w − σ(2)
v σ(2)

w − σ(1)
v σ(1)

w

)
= 0.

In the case where only one of the spins (but not both) is in the cluster (w.l.o.g assume
v /∈ C and w ∈ C), we find that

Jvw(σ(1)
v σ(1)

w + σ(2)
v σ(2)

w − σ′(1)
v σ′(1)

w − σ′(2)
v σ′(2)

w )

= Jvw
(
σ(1)
v σ(1)

w + σ(2)
v σ(2)

w − σ(1)
v σ(2)

w − σ(2)
v σ(1)

w

)
= Jvw

(
σ(1)
v − σ(2)

v

) (
σ(1)
w − σ(2)

w

)
= 0,

where in the last equality, we used the fact that σ(1)
v = σ

(2)
v by design of the Houdayer

move. Indeed, since v /∈ C, it can only be that their site overlap was equal to 1, i.e.,
σ

(1)
v = σ

(2)
v . The case where the site overlap is -1 is impossible as otherwise v would have

been added to C since v is connected to w.

Putting it all together we get

H(σ(1)) +H(σ(2)) = Hq(σ(1)) +Hl(σ(1)) +Hq(σ(2)) +Hl(σ(2))
= Hq(σ′(1)) +Hl(σ′(1)) +Hq(σ′(2)) +Hl(σ′(2))
= H(σ′(1)) +H(σ′(2)),

which concludes the proof.

From this and the fact that the two configurations are at the same temperature, we conclude
that the move chosen is always accepted with probability 1. Also, by noting that after the
move the local overlap remains the same, the detailed balance equation is satisfied (see lemma
3.4.2). To be a valid method though, we should still enforce ergodicity, which is not yet the
case. So the move has to be combined with some other method, the most simple being to add
another simple move on top of it, the usual one being the single-flip procedure.

Lemma 3.4.2. The Houdayer move satisfies the detailed balance equation.
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Proof. Let
(
σ(1),σ(2)

)
and

(
σ
′(1),σ

′(2)
)
be two pairs of configuration. We want to show that

µβ
(
(σ(1),σ(2))

)
P
(
(σ(1),σ(2))→ (σ′(1),σ

′(2))
)

= P
(
(σ′(1),σ

′(2))→ (σ(1),σ(2))
)
µβ
(
(σ′(1),σ

′(2))
)
.

If the pairs are not reachable by the move, then the transition probabilities will be both equal to
0, satisfying the equation. Otherwise both pairs have the same total energy, and we have that
µβ
(
(σ(1),σ(2))

)
= µβ

(
(σ′(1),σ

′(2))
)
. Moreover, noting that when going from one pair to the

other through the move the local overlap remains unchanged, this means that the probability
of going from a specific pair p to another pair q accessible by flipping one of the Houdayer
clusters is the same as the probability from q to p. This is in particular true for the the two
pairs in consideration

(
σ(1),σ(2)

)
and

(
σ
′(1),σ

′(2)
)
, so that the detailed balance equation is

satisfied.

Below, we describe two simple properties of the Houdayer move.

Lemma 3.4.3. Consider a pair of spin configurations
(
σ(1),σ(2)

)
such that their local overlap

induces the set of Houdayer clusters C. Then, when performing a Houdayer move, we have that:

1. The move is able to reach |C| unique pairs.

2. If |C| = 1, performing the move leads to the pair
(
σ(2),σ(1)

)
.

Proof. Recall that for the Houdayer move, we are allowed to select exactly one of the clusters
in C. Moreover since the clusters are spins where the pair of configurations differ, a unique pair
will be reached for each choice of cluster.

Since there are |C| clusters to choose from, the number of unique pairs reachable is simply |C|.

For the second part of the proof, note that if there is only one cluster to choose, then we
swap exactly all spins which are different between the two configurations in the pair, which is
equivalent to just switching the elements of the pair.

3.4.3 In Practice

As mentioned earlier, the Houdayer move has to be combined with another move like the
single-flip to ensure that the system is ergodic. Moreover, in practice one frequently combines
Houdayer moves with parallel tempering in the following way [15]: one starts with multiple
replicas at various temperatures. At each iteration, for each temperature, replicas are randomly
paired and a Houdayer move is performed, followed by a single-flip one. After that, replicas at
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neighboring temperatures are randomly paired and exchanged according to equation 3.1. This
is described more precisely in algorithm 1.

Algorithm 1: Parallel Tempering with Houdayer Move
Input :Number of iterations N , Number of replicas R at each temperature, Temperatures

β1, β2, . . . , βk
for i = 1 to k do

Set R random replicas at temperature βi.
end
for n = 1 to N do

for i = 1 to k do
Randomly pair the replicas at temperature βi and perform a Houdayer move on
each of these pairs.

end
for i = 1 to k do

for r = 1 to R do
Perform one iteration of the Metropolis algorithm using a single-flip on replica r
at temperature βi.

end
end
Pair neighboring temperatures in the variable t.
for (βn, βm) in t do

Randomly pair replicas at the different temperatures and exchange them with
probability as described in equation 3.1.

end
end

Notice here the use of the most general setting: many replicas are simulated at multiple
different temperatures, and are all updated independently (through the single-flip procedure)
and collectively (through the Houdayer move). On one hand, having many replicas allows for
faster mixing, while the use of both single-flip and Houdayer moves allows to explore the space
of configuration reasonably. On the other hand, having a range of temperatures where replicas
can move up and down gives the possibility to further escape the local minima. This way,
parallel tempering with Houdayer moves explores both horizontally and vertically.

3.4.4 Limitations

There are multiple limitations and questions that can be raised concerning the Houdayer move.
First, one should observe that whenever the local overlap only induces one Houdayer cluster,
we know from lemma 3.4.3 that the move will just yield the same pair but reversed, essentially
doing nothing (see figure 3.3). This already raises two questions: how often does this happen,
and is it possible to avoid it? There are also other details of interest, which we list below.

• The Houdayer move can fail
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A partial answer to the question of when failures occur is that the more connected the
graph of the Ising model G is, the more likely it is that there is only one Houdayer cluster.
Indeed in the limit where we consider a complete graph, whatever the local overlap is, all
sites with value -1 are necessary be connected and thus form a single Houdayer cluster.
The question is related to percolation theory, which describes the formation of long-range
connectivity in random graphs, but for topologies like a lattice the Houdayer move works
well [14].

Figure 3.3 – A visual representation of a failed Houdayer move. It starts with a pair of
independent spin configurations (σ(1),σ(2)) and first compute their local overlap, revealing
where spins differ between the two configurations. In this case there is only one cluster to choose
from, which has the effect of exchanging the two configurations, i.e., (σ′(1),σ

′(2)) = (σ(2),σ(1))
.

It is however not clear completely clear how one can avoid the formation of spanning
Houdayer clusters. Some research in this line of work has been done to solve the issue
in the case of the Ising model with no external magnetic field [15], but it still remains
unanswered in the more general case.

• The Houdayer move is biased

Unlike cluster algorithms like Wolff or Swendsen-Wang, the choice of cluster here does
not depend on the weights of the bonds, but just on the topology of the graph underlying
the Ising system at hand. So one can question the way we decide which cluster to
pick. Indeed, since during the cluster selection process we first choose a site with local
overlap value qi = −1 and then grow the corresponding cluster, the bigger a cluster is
the higher the chance of selecting it. In fact, the probability of selecting a particular
cluster is directly proportional to its size. More precisely, if we have Houdayer clusters
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C = {C1, C2, . . . , Cn} (which form a partition of sites with local overlap qi = −1), then
we have that P(Ci) = |Ci|/

∑n
j=1 |Cj |. But it is not clear why it should be the case that

larger changes should be made in order to improve the sampling. In the next chapter,
we solve some of these issues by extending the Houdayer move and allowing for example
the selection of clusters uniformly at random, and also the possibility to select multiple
clusters at the same time.

3.5 Efficient Optimization

So far, we presented the Metropolis algorithm as a way to sample from a desired distribution,
enabling the minimization of the Hamiltonian H of some spin-glass system when performed at
low temperature. By combining it with procedures like parallel tempering and new proposal
moves like cluster moves, this can potentially improve the sampling process. We present two
additional heuristic methods that are important in this project and are widely used in the field
of optimization.

3.5.1 Simulated Annealing

Simulated Annealing (SA) [16] is a method used to solve all kinds of optimization problems,
many of which are of combinatorial nature like the Maximum Cut problem [36]. It is a slight
adaptation of the Metropolis-Hastings to improve the optimization process. Indeed, running the
Metropolis algorithm directly at low temperature where we can theoretically sample the global
minima often does not work well because we would have to wait too long reach the equilibrium
distribution. Instead, simulated annealing uses an idea coming from metallurgy when working
with some materials. Often one is interested in increasing the size of the material’s crystals
and reduce their defect, which is achieved by heating and cooling the material in a controlled
way. In the context of optimization, we simulate this annealing process as follows: starting at
high temperature, multiple iterations (also called "sweeps") of the Metropolis algorithm are
executed until approximate equilibrium is reached. Typically for Ising models, the number of
sweeps is often chosen to be equal to the number of spins in the system. Once this happens,
the temperature is lowered and the process starts again, as described in algorithm 2. The way
the temperature is updated can follow various schemes (a linear decrease or a geometric one
for example) and we often refer to it as the "temperature schedule". When the temperature
becomes sufficiently low, the corresponding equilibrium distribution is an approximation of
the system’s ground state distribution. Sampling then gives access to approximately optimal
energy configurations.

It can be observed that the algorithm is in a way quite similar in spirit to the idea of parallel
tempering, in the sense that it tries to improve sampling by allowing spin configurations to
move in the temperature space. It has the advantage of being simple and thus quite fast in
practice compared to parallel tempering, however it is good to keep in mind that in its original
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Algorithm 2: Simulated Annealing
Input :Number of iterations N , Number of sweeps Ns, Temperature Schedule

β1 < β2 < · · · < βN
Initialize a random spin configuration σ.
for i = 1 to N do

Perform Ns iterations of the Metropolis algorithm on σ at temperature βi.
end

form, simulated annealing can only decrease the temperature of the system. Modified versions
exist where the temperature can go both up and down which can sometimes make the annealing
process more efficient [37].

3.5.2 Genetic Algorithms

Genetic algorithms form a large family of optimizers for both constrained and unconstrained
problems. They are based on the process of natural selection and aim to imitate biological
evolution by performing a randomized search of the state space [38]. They are presented in more
details in section 4.2.3, where we show how the Houdayer move can be used in this setting.

3.6 Comparison of the Methods

A comparison of the various methods introduced above is presented here, with the aim of
determining what the limits are depending on the chosen Ising system. We first compare the
moves presented so far, from the single-flip strategy to the more complicated Houdayer move
all used within the simulated annealing procedure. To do so, simulations are run on multiple
Ising systems with different bond weights and topologies. We then proceed to look at how
performant simulated annealing and parallel tempering compare on identical problems, but
also in terms of running time.

3.6.1 Ferromagnetic Model

For the first set of experiments, the simple ferromagnetic Ising model is considered, i.e., the
system can be represented by a graph G = (V,E) with Hamiltonian of the form H(σ) =
−
∑

(i,j)∈E Jijσiσj with Jij > 0. The optimum is then known, which is when all spins are
aligned, so we have H∗ = −∑(i,j)∈E Jij . The weights are chosen randomly and are distributed
uniformly on the interval [0, 1]. Notice that in the simple model, there is no external magnetic
field, so hi = 0. Also, we always assume that G is a connected graph, since otherwise we can
separate the spins in more than one component and solve independently.

Simulations are run using simulated annealing for the following moves: single-flip, Houdayer,
Wolff and Swendsen-Wang. Note that the Houdayer move is always combined with a single-flip,
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so that at each iteration both moves are performed. Each time, the process is run with 25
replicas for 300 iterations so that we can then display the average behavior and also visualize the
standard deviation of the mean. The temperature schedule starts with an inverse temperature
of β1 = 0.01 and follows a geometric increase with factor 1.04. This choice of temperature
enables to not perform too much random sampling at first (since the initial inverse temperature
is not too low) and allows to reach inverse temperatures high enough so that we are closer to
the distribution we want to sample from.

Here, we consider two types of graph, all containing 1024 nodes.

Square Lattice

The first topology, which is of central importance in physics, is the 2-dimensional lattice with
results presented in figure 3.4.
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Figure 3.4 – Result of SA for various moves on a 32× 32 square lattice graph for the simple
ferromagnetic model.

.

For this model and choice of topology, it is well-known that cluster Monte-Carlo algorithms
like Wolff and Swendsen-Wang perform very well as observed. An interesting thing to notice
is how Wolff algorithm takes a while before really starting to reduce the value of the energy,
but then follows the same trajectory as the Swendsen-Wang algorithm. On the other hand,
the single-flip method is the worse of all and seems to get stuck in a local minima. Enhancing
it with the addition of Houdayer does help a quite a bit, but this is not as good as the other
cluster algorithms. Indeed, even with the Houdayer move the optimization process seems to
require many additional iterations to reach the ground state.
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Erdös-Rényi Graph

For the rest of the experiments, we decide to not consider a specific topology and instead use
the Erdös-Rényi model [39] to generate random graphs with a desired number of nodes n.

Definition 3.6.1 (Erdös-Rényi Graph). An Erdös-Rényi (ER) graph on vertex set V and with
parameter p is a random graph which connects independently every possible pair of vertices
(v, w) with probability p. It is also denoted as ER(n, p), where n = |V |.

We run simulations for three values of p (0.007, 0.01 and 0.05), resulting in more and more
connected graphs since the expected number of edges is given by

(n
2
)
p. Results are presented in

figures 3.5, 3.6 and 3.7.
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Figure 3.5 – Result of SA for various moves on a ER(1024, 0.007) graph for the simple
ferromagnetic model.

.

The first thing to notice is that once again methods like Wolff and Swendsen-Wang are able
to reach equilibrium in a low number of iterations for the simple ferromagnetic model. So
let us shift the focus to the single-flip strategy and the Houdayer one, and see if results are
as expected. When p = 0.007 the graph is least dense and this can be seen first through the
fact that there is a lot of variability in the trajectories taken since there are less interactions
between spins to take into account. Both methods seem to get at least close to optimality but
not exactly, with the use of the Houdayer move helping in this sense. When we increase the
value of p, we see two main things. First, both methods achieve optimality, with less and less
variability as p increases. Secondly, as the graph gets more and more connected, using the
Houdayer move becomes less effective since there is more chance of a failed move in this case.

In terms of running time, the picture seems to be reversed as shown in table 3.1. The fastest
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Figure 3.6 – Result of SA for various moves on a ER(1024, 0.01) graph for the simple ferromag-
netic model.

.

method is the single-flip since it is an easy update and there exist various ways of making it
fast by taking into account the fact that the move is local. As we move toward cluster moves,
the running time increases slightly with the Houdayer move. Wolff’s algorithm in particular
takes more time as it has to grow a cluster and consider many edges in the process. The worst
is Swendsen-Wang, as it does the same as Wolff but grows multiple clusters to be flipped. In
general for any method, the running time grows proportionally to the number of edges in the
graph.

Single-Flip Houdayer Wolff Swendsen-Wang
2D Lattice (n = 32× 32) 1.17 1.60 4.5 7.42
ER(n = 1024, p = 0.007) 1.86 3.63 7.95 13.32
ER(n = 1024, p = 0.01) 2.38 4.48 10.36 18.11
ER(n = 1024, p = 0.05) 10.02 16.26 43.82 85.12

Table 3.1 – Summary of average running time (in seconds) over 25 runs of the simulated
annealing for different moves and different topologies on simple the ferromagnetic Ising model.

Overall for the ferromagnetic model, it seems clear that Wolff and Swendsen-Wang should be
used in most cases to arrive at the stationary distribution. If time is a big constraint, then
using the combination of single-flips with Houdayer move does bring some improvement when
the graph is not too dense.
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Figure 3.7 – Result of SA for various moves on a ER(1024, 0.05) graph for the simple ferromag-
netic model.

.

3.6.2 Spin-glass Model

For the more general spin-glass model, we repeat the same experiments with the same choice of
topologies. Recall that the general spin-glass Ising model with underlying graph G = (V,E)
and no external magnetic field has Hamiltonian of the form H(σ) = −∑(i,j)∈E Jijσiσj with
Jij ∈ R. The weights are chosen randomly and are distributed following a Gaussian distribution
with mean 0 and variance 1. Note also that here the optimum cannot easily be found here so in
the plots we display the evolution of the energy of the system.

Simulations are run using simulated annealing with the same parameters as in previous section
and results can be found in the appendix A.2.

Square Lattice

The first observation here is that the previously best methods, Wolff’s algorithm and Swendsen-
Wang, are not able to reach an optimum value. They diverge and stabilize around the same
local minimum, showing the limits of the two techniques and the need for new dynamics when
simulating general spin-glass systems. With single-flip dynamics, a significantly better minimum
is reached, and this is further improved by the use of the Houdayer move as expected [14].
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Erdös-Rényi Graph

Similar results are obtained for the generated random graphs, in particular the divergence
behavior is observed just as in the lattice case. The local update method attains a lower energy
value and is slightly enhanced by the use of the Houdayer move, but again as the graph gets
more connected its efficiency decreases as expected.

Overall for the general spin-glass model, it is clear that both Wolff and Swendsen-Wang become
inappropriate and this is where the use of the Houdayer move can be interesting. Even though
the improvement is not huge, it is still noticeable. In next section, we dig deeper in this direction
and see whether the use of parallel tempering can further improve optimization.

3.6.3 Simulated Annealing vs Parallel Tempering

It was identified in section 3.5.1 that even though similar in spirit, simulated annealing and
parallel tempering are still different in the sense that in one case replicas can only go down in
temperature while in the other, they are able to freely move up and down. Moreover for parallel
tempering, one can have multiple replicas simulated at each temperature. A comparison of the
two methods is presented, making it clear that parallel tempering is more powerful in finding
better minima. Running times are also compared in order to determine which method would
make more sense to be used in practice.

The benchmark procedure is similar as before: each method is ran for 1000 iterations, 25 times
each in order to capture the average behavior when minimizing the energy of a spin-glass
system with random bond weights distributed according to a Gaussian distribution with mean
0 and variance 1. For simulated annealing, the temperature schedule starts at β1 = 0.01 and
increases geometrically with a factor of 1.04. The temperatures chosen for parallel tempering
are such that the first and last temperatures match for both schedules, however only 40 inverse
temperatures are considered for parallel tempering and they also follow a geometric increase.
Moreover at each temperature, two replicas are simulated. The results reported are the energies
of the replicas at the lowest temperature.

Square Lattice

In the case of the lattice (see figure 3.8), one notices that the addition of parallel tempering
offers the possibility to lower the energy just slightly more when we restrict to the single-flip
move. In that case, using the simple simulated annealing would make sense as it can be ten
times faster. However, once the Houdayer move is added, the difference is very clear in the
sense that parallel tempering converges much faster to equilibrium.
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Figure 3.8 – Result of SA vs PT for various moves on a 32× 32 square lattice graph for the
spin-glass model.
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Erdös-Rényi Graph

For random graphs, the same behavior is observed by generating multiple Erdös-Rényi graphs.
We show in figure 3.9 an example when we pick p = 0.01 and the conclusions are the same as
for the lattice, that is parallel tempering accelerates the convergence to equilibrium.

In terms of running time, we already commented for the simulated annealing in previous sections
so we focus on parallel tempering. Results are displayed in table 3.2. We simply notice the
running time is significantly higher on average, which is simply explained. Since at each of
the 40 temperatures, there are multiple replicas simulated the time increases proportionally to
the number of these. By increasing the number of temperatures and the number of replicas
simulated at each temperature, we can reach much better minima but at the cost of having a
significantly longer running time.

SA(Single-Flip) SA(Houdayer) PT(Single-Flip) PT(Houdayer)
2D Lattice (n = 32× 32) 2.01 3.11 20.26 24.32
ER(n = 1024, p = 0.01) 7.52 17.61 100.14 114.95

Table 3.2 – Summary of average running time (in seconds) over 25 runs of the simulated
annealing and parallel tempering for different moves and different topologies for the spin-glass
model.

Another consideration with parallel tempering is what number of temperatures should be
considered in order to be efficient. It turns out that about 30 to 40 of them is usually sufficient,
as shown in figure 3.10 when optimizing an Ising lattice. The best energy level found first
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Figure 3.9 – Result of SA vs PT for various moves on a ER(1024, 0.01) graph for the spin-glass
model.

.

decreases when we allow more temperatures at which replicas are simulated, but after a certain
number the improvement becomes negligible. To summarize this experiment, parallel tempering
can yield quite some improvement over the simple simulated annealing procedure. By allowing
replicas to move more freely in temperature space, exploration becomes easier and one can
supplement it with Houdayer moves to reach lower energy levels.
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Figure 3.10 – Comparison of the best energy value found when varying the number of tempera-
tures in parallel tempering. The problem solved is an Ising lattice with normally distributed
weights, and results are shown for both single-flip and Houdayer moves.
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4 Applications to Concrete Problems

This chapter explores further uses of the Houdayer move, by first proposing an extended version
allowing for various improvements. A description of an alternate way to use the Houdayer
move on its own and not through the Metropolis algorithm is presented in order to refine the
sampling of low-energy configurations. Again here, the simple extension gives the possibility to
further ameliorate the process, and a genetic algorithm based on these ideas is developed.

The remaining part of the chapter is dedicated to a concrete optimization problem coming from
industry, going into details about how the previous developed tools can be used to solve it. In
particular, we perform a benchmark to get some empirical results and assess the efficiency of
the algorithms.

4.1 Extending the Houdayer Move

The main feature of the Houdayer move is its ability to reach new pairs while preserving
the total energy. In section 3.4.4, we raised a few limitations of the original approach, and
highlighted the fact that it would give more freedom if after computing the local overlap, any
Houdayer cluster could be chosen uniformly at random. By also noting that choosing multiple
clusters to be flipped does not impair the move’s main property (see lemma 4.1.1), we propose
an extension of the original Houdayer move by allowing to attain an exponentially larger amount
of pairs at the same total energy level.

4.1.1 Description

Recall that the Houdayer move starts by computing the local overlap, and in so defines a set
of Houdayer clusters. The next step is to then choose one of these clusters and perform the
swap of the corresponding spin values between the two configurations. The variant we propose,
which we refer to as the extended Houdayer move, works as follows:
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1. Compute the local overlap qi = σ
(1)
i σ

(2)
i at every site just as in the original Houdayer

move.

2. The overlap computed in previous step defines a set of Houdayer clusters C. Select any
combination T ⊆ C of Houdayer clusters according to a desired probability distribution
and flip the corresponding spins in both configurations. Since there is no specific reason
to take a special distribution over all possible combinations, we argue that selecting
uniformly at random out of all possible combinations is a reasonable choice.

To summarize, the extended move considers not only one Houdayer cluster to flip, but any
combination (could be none or all clusters as well) of them. It might not seem clear yet why we
would allow to flip no clusters or all of them as this essentially corresponds to a failed Houdayer
move, but it will be treated in chapter 5. A depiction of the move can be found in figure 4.1.
Note that by enabling the choice of any distribution on the combination of clusters to flip,
this can allow to control for example "how far" we jump in terms of Hamming distance in the
configuration space, which could potentially be beneficial in certain applications.

Figure 4.1 – A visual representation of the extended Houdayer move. It starts with a pair of
independent spin configurations (σ(1),σ(2)) and first computes their local overlap, revealing
where spins differ between the two configurations. This defines a set of Houdayer clusters
(highlighted in red, both dashed and solid lines), from which a combination of these is chosen
uniformly at random (circled in red with solid lines). After that, the spins in the selected
clusters are swapped between the two replicas, or equivalently they are flipped, yielding the
new pair (σ′(1),σ

′(2)).

From this general framework, we can find the original Houdayer move simply by choosing
the distribution over the possible combinations to be equal to 0 whenever the combination
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T ⊆ C does not have exactly one cluster (that is |T | 6= 1), otherwise we weight it just like in
the original move as explained in section 3.4.4. Moreover, this means that whatever pairs are
accessible through the original Houdayer move, they will also be accessible for the extended
move.

4.1.2 Properties

One can easily follow the same proof technique used for the original move to show that the
total energy of the pair is preserved through the move.

Lemma 4.1.1. Consider a pair of spin configurations (σ(1),σ(2)) and suppose that an extended
Houdayer move results in the new pair (σ′(1),σ′(2)). Then we have H(σ(1)) + H(σ(2)) =
H(σ′(1)) +H(σ′(2)).

Proof. We follow the same proof idea as in lemma 3.4.1 and prove that both the linear part
and quadratic part of the sum of the Hamiltonian values remains unchanged.

Suppose that the local overlap induces the set of Houdayer clusters C and that we choose the
combination of clusters T ⊆ C.

1. Linear part

We have

Hl(σ(1)) +Hl(σ(2))−Hl(σ′(1))−Hl(σ′(2))
= −

∑
v∈V

hv(σ(1)
v + σ(2)

v − σ′(1)
v − σ′(2)

v )

= −
∑
C∈T

∑
v∈C

hv(σ(1)
v + σ(2)

v − σ′(1)
v − σ′(2)

v )

= −
∑
C∈T

∑
v∈C

hv(σ(1)
v + σ(2)

v − σ(2)
v − σ(1)

v )

= 0,

where in the second equality we used the fact that for all spins not in the combination of
clusters, their value is unchanged resulting in the corresponding term in the sum to be
zero.

2. Quadratic part
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Hq(σ(1))+Hq(σ(2))−Hq(σ′(1))−Hq(σ′(2))

= −
∑

(v,w)∈E
Jvw

(
σ(1)
v σ(1)

w + σ(2)
v σ(2)

w − σ′(1)
v σ′(1)

w − σ′(2)
v σ′(2)

w

)
= −

∑
C∈T

∑
(v,w)∈E:

v∈C or w∈C

Jvw
(
σ(1)
v σ(1)

w + σ(2)
v σ(2)

w − σ′(1)
v σ′(1)

w − σ′(2)
v σ′(2)

w

)
,

where again we used that when we consider an interaction involving spins which are
unchanged, the term in the sum is zero. For the other terms involving the combination of
clusters, we continue to follow the proof of lemma 3.4.1 since the analysis also applies in
this case, and get that

Hq(σ(1)) +Hq(σ(2))−Hq(σ′(1))−Hq(σ′(2)) = 0,

as expected

The improved properties of the extended move are presented below, and can be compared to
those presented in lemma 3.4.3 for the original move.

Lemma 4.1.2. Consider a pair of spin configurations
(
σ(1),σ(2)

)
such that their local overlap

induces the set of Houdayer clusters C. Then, when performing an extended Houdayer move,
we have that:

1. The move is able to reach 2|C| unique pairs of configurations.

2. For any pair
(
σ
′(1),σ

′(2)
)
that is reachable, the pair

(
σ
′(2),σ

′(1)
)
also is.

3. The number of unique configurations found through the move is equal to 2|C|.

Proof. Recall that for the extended move, we are allowed to select any combination of clusters
in C. Moreover since the clusters are spins where the pair of configurations differ, a unique pair
will be reached for each combination of clusters chosen.

Since there are |C| clusters to choose from, and we can decide any number of clusters, the
number of total combinations (or unique pairs) is equal to
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|C|∑
i=0

(
|C|
i

)
= 2|C|,

as required.

For the second part of the proof, we show how to choose clusters that yield two pairs where
one of them is the "inverted" version of the other. To this end, suppose one chooses to flip the
combination of clusters T ⊆ C. Since in the pair of configurations spins are different on C, let
us focus on these spins precisely.

Looking at σ(1), we get that the configuration σ′(1) after swapping is essentially the same as
before except now that for spins in T , they have value of those in σ(2). Notice that spins in
C \ T still have the values of those in σ(1).

On the other hand, we have that σ′(2) is unchanged except on T where it has now the values of
σ(1). Notice that spins in C \ T still have the values of those in σ(2).

Now instead of doing the move using T for the clusters to flip, suppose we use the clusters
C \ T . Looking at σ(1), we get that the configuration σ′(1) after swapping is the same as before
except now that for spins in C \ T , they have value of those in σ(2). Notice that spins in T still
have the values of those in σ(1). But this is exactly equal to σ′(2). In the same way, getting the
second element of the pair actually yields σ′(1).

We can thus conclude that from any pair of configurations
(
σ(1),σ(2)

)
, performing the extended

Houdayer move with clusters in T gives us a pair
(
σ
′(1),σ

′(2)
)
, while using the clusters C \ T

yields the pair
(
σ
′(2),σ

′(1)
)
.

The last part is proven by combining the first two results. From second point, we know that we
should only consider half of the pairs, and from first point, we know every pair is unique. Since
there are two configurations in a pair, the number of unique configurations is 2 · 2|C|−1 = 2|C| as
claimed.

Point 2 gives an interesting take on what is considered a failure in the original Houdayer move.
Essentially if one chooses no cluster to flip (that is we choose the combination T = ∅), we get
back the exact same pair as we started with, but if we pick the complement C \ T = C, so all
clusters, we know that the pair is inverted. So in the framework of the more extended Houdayer
move, a "failure" happens whenever all clusters are selected.

A detail which is interesting to highlight as it can make a difference in practice, is another
consequence of point 2. The fact that for any accessible pair, the pair with same elements
but inverted is also accessible tells us that when not considering the ordering of a pair, half

41



Chapter 4 Applications to Concrete Problems

of them are in fact identical. As such, if we are interested in computing all unique pairs but
without considering the ordering, then only half of them needs to be computed. In fact, the
configurations that form these pairs corresponds to the 2|C| unique configurations mentioned in
point 3.

4.1.3 In Practice

In practice, the selection of one of the combination uniformly at random is done in two steps.
The following scheme is proposed:

1. Choose a number i of Houdayer clusters to be picked according to P(select i clusters) =(|C|
i

)
/2|C|. So i is distributed according to a Binomial random variable Bin(n, p) with

n = |C| and p = 1/2.

2. Sample uniformly at random i Houdayer clusters from the |C| available ones.

The explanation comes from the fact that in total there are 2|C| combinations to choose from
(see proof of lemma 4.1.2), so at the end of the selection process we want to get any of them
with the same probability 1/2|C|. Let us see that it is indeed the case, so consider a combination
T ⊆ C with |T | = j Houdayer clusters. The probability to pick T is equal to

P(select j clusters and select the combination T )
= P(select j clusters) · P(select the combination T )

=
(|C|
j

)
2|C|
· 1(|C|

j

)
= 1

2|C|

as desired.

4.1.4 Greedy Version of the Move

The version of the algorithm presented in section 4.1.1 has the advantage of being "as random
as it gets". Indeed, we argued that the original Houdayer move had the downside of being
biased into picking certain new pairs out of all possible ones. With the extended Houdayer
move with uniform choice of combination, any pair is accessed with the same probability.

One can of course question this and instead follow a more greedy approach when getting to a
new pair of configurations. A simple idea is to not choose just one pair at random, but first
generate all the 2|C| that are accessible (see lemma 4.1.2). In particular, we also know that
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there are 2|C| unique configurations in total. From all these, we can make a greedy choice and
pick the two with lowest energy level as the new pair. This strategy is shown in figure 4.2.

(Extended)
Houdayer Move

Figure 4.2 – A visual representation of the greedy Houdayer move, where configurations have
a darker red color when their energy is lower. One starts by computing the local overlap,
determining all possible combinations as in the extended Houdayer move, and thus all accessible
pairs at the same energy level. The greedy choice happens when the new pair is chosen to be the
two configurations with lowest energy values out of all generated (which visually corresponds
to the two with the darker red).

Unfortunately, since the number of accessible pairs is exponential in the number of Houdayer
clusters in the local overlap, this strategy can become incredibly costly. In order to reduce this
complexity, we can instead pick a random sample of p pairs out of all possible pairs that are
accessible through the extended move and keep the two best configurations among these just as
before. This way, the time spent finding new pairs can be adjusted by changing the value of p.
Note that when we take only p = 1 sample pair, this scheme reduces to the extended Houdayer
move with uniform choice over all combinations of Houdayer clusters.

4.1.5 Numerical Results

We present multiple experiments to compare the extended Houdayer move with the original
one and the greedy version of it. Since the greedy version can be more or less greedy depending
on the number of pairs sampled when computing accessible pairs, we wish to understand how
much it affects the optimization process. Experiments are performed for the same topologies as
experiments in previous chapter and with the same schedules and parameters. Also, multiple
runs are still done and the average behavior is displayed together with the standard deviation.

Square Lattice

First, we compare the behavior on the 32 × 32 square lattice, using the Houdayer move, its
extended version, and the greedy version where at each step we sample 50 pairs from all possible
ones. The resulting plot is shown in figure 4.3, where we notice that using the extended version
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of the move slightly improves the convergence. There is however a more apparent improvement
when employing the greedy version. Indeed, the same energy level as the other methods is
reached using only a few iterations. In an attempt to make the difference between the techniques
more visible, a similar experiment is done on a larger lattice.

0 100 200 300 400 500
Iteration Number

1200

1000

800

600

400

200

0

(
)

*

Houdayer
Extended Houdayer
Greedy Houdayer

Figure 4.3 – Result of PT for different variants of the Houdayer moves on a 32 × 32 square
lattice graph for the spin-glass model.

The two plots 4.4 and 4.5 are representative of what can happen in a large square lattice when
using the different forms of the Houdayer move. In the top plot, one can notice first that
the extended Houdayer move performs slightly better than the original one. The interesting
outcome is for the greedy strategy, which is able to reach lower levels of energy much faster
than the other two. One should also keep in mind that in order to do so, a lot more processing
has to be done since many possible pairs are being generated and then compared to keep the
two best configurations. Additionally, even though it can go down the energy landscape faster,
we note that it get stuck in some local minimum and at iteration 900, the extended Houdayer
move is able to reach better values.

Figure 4.5 shows another run of the same model (but with different random weights), but this
time the greedy procedure is able to perform much better than the others. To sum up, the
greedy procedure can be very powerful but from its random nature when sampling pairs, it can
happen to get stuck in a local minimum.

Another type of experiment one can do is to look at the behavior of the greedy method
depending on the number of pairs taken. We thus repeat previous experiment but this time
for a spin-glass model with bonds following the N (0, 1) distribution, and comparing greedy
methods when sampling 50 and 250 pairs. Results are displayed in figure 4.6 showing that
eventually, all methods converge to a common energy, with the greedy methods arriving in
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Figure 4.4 – Result of PT for different variants of the Houdayer moves on a 100× 100 square
lattice graph for the ferromagnetic model. Here, the greedy Houdayer move gets stuck in a
local minimum which is worse than the other methods.

approximately half as many iterations as the extended Houdayer method. Comparing the two
variants of the greedy approach, we see that choosing 250 pairs instead of 50 pairs results in a
slightly faster convergence rate per iteration. More results about running time can be found in
table 4.1.

Erdös-Rényi

For Erdös-Rényi random graphs, a comparison of the different Houdayer moves on 1024-nodes
graph is performed, with results in figure 4.7.

Results are similar in the sense that greedy methods tend to reach a minimum faster than the
others. However we see here that there is not much difference between the original Houdayer
move and the extended one. Indeed, since the graph is now random and does not have a
particular structure like a lattice (with low degree at each vertex), it could be that there are
fewer Houdayer clusters in the local overlap, making both the original and extended move
essentially perform similar moves. We thus re-iterate the experiment but on a random graph
with 10’000 nodes (figure A.6). There is still not much difference with the use of the extended
move here as well, suggesting that the original Houdayer move is already pretty good in terms
of "horizontal" exploration of the landscape, even though at each step it can only access less
pairs than the extended move.

In terms of running time, the trend is clear: the greedier the method, that is the more pairs are
computed, the more processing time is required. Table 4.1 summarizes the values obtained for
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Figure 4.5 – Result of PT for different variants of the Houdayer moves on a 100× 100 square
lattice graph for the ferromagnetic model. Here, the greedy Houdayer move is able to reach
lower energy levels than other methods.

the graphs with 10’000 nodes.

SA(Extended) SA(Greedy 50 pairs) SA(Greedy 250 pairs)
2D Lattice (n = 100× 100) 15.86 19.29 79.39
ER(n = 10000, p = 0.007) 24.22 31.3 125.23

Table 4.1 – Summary of average running time (in seconds) over 25 runs of the simulated
annealing for different Houdayer variants and different topologies for the spin-glass model.

4.2 Improved Sampling of Low Energy Configurations

Existing classical optimization techniques can solve computationally hard problems exactly
but their complexity is often worse than polynomial in the size of the input. For example,
calculating exact ground states of Ising models on general graph topologies is NP-hard [40].
Here, we are interested in finding many of the ground states of degenerate systems while still
requiring a reasonable computing time, that is polynomial in the size of the input. In previous
chapter, we mentioned the use of heuristic methods in order to solve these hard problems
approximately in a more adequate amount of time. One issue that arise in this context is that
these techniques tend to be biased and produce correlated solutions [41]. Depending on how
well they balance exploration and exploitation, some parts of the state space will be visited
more than others, and in the worst case some may never be visited at all.

Moreover as we explore in section 4.3, for some industrial applications we do not necessarily
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Figure 4.6 – Result of SA for different variants of the Houdayer moves on a 100× 100 square
lattice graph for the spin-glass model.

care about the minimum cost solution but often desire to have many varied low-energy solutions.
Here, we demonstrate that cluster updates combined with some simple heuristics can yield
algorithms which can sample more fairly the low-energy regions of the state space. A similar
approach has been explored in [42], where a scheme to generate unexplored ground states of an
Ising problem is proposed.

4.2.1 Improved Sampling of Ground States

We first start with an idea similar to that in [42]: starting from a pool of a few optimal
configurations, the algorithm generates potentially new solutions using the Houdayer move.
The concept is the following: the main property of the Houdayer operation is its ability to
"teleport" from a pair of configurations to another one with same total energy, and this property
happens to be interesting when we are at optimality. Indeed, suppose we are given two ground
states

(
σ(1),σ(2)

)
of a certain Ising problem, that is H

(
σ(1)

)
+H

(
σ(2)

)
= 2H∗. Since the

move preserves this energy, what one sees typically is that the energy of one of the configuration
decreases, while the other increases by a similar amount. However in the case of two ground
states, decreasing is impossible so it must be that the two configurations in the new pair are
also ground states. Note that we still have the issue that when there is only one Houdayer
cluster induced by the local overlap, this will result in the same pair but with configurations
exchanged which is of no use here. Thus, this method is mainly applicable in cases where the
topology is not too dense and the Houdayer clusters do not percolate.
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Figure 4.7 – Result of SA for different variants of the Houdayer moves on a random 1024-nodes
graph (ER(n = 1024, p = 0.005) on the top plot, and ER(n = 1024, p = 0.01) on the bottom
one) for the spin-glass model.

Algorithm Description

The procedure, also described in algorithm 3, is as follows:

1. Initialize a pool P of configurations.

2. Construct (random) pairs of configurations from P .

3. For each pair, compute the local overlap and generate all accessible unique configurations
(see considerations from lemma 4.1.2) from that pair. Add the new configurations to the
pool P if they are not there already.

4. Go back to step 2, or stop when desired or if no new configuration can be generated.
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Algorithm 3: Ground States Generator
Input :Pool of configurations P , Maximum number of iterations nmax
i ← 0
while i < nmax do

Construct a set of (random) pairs of configurations Q from P .
for q in Q do

Compute the local overlap and generate the set of all accessible unique
configurations C (see considerations from lemma 4.1.2) from pair q.
P ← P ∪ C
if |C|= 0 then

break
end
i ← i+ 1

end
end
return P

We can make the following observations:

• In step 1 we actually allow any configuration to be part of the pool (not only optimal
ones), simply because the algorithm can also find ground states when it is given low-energy
configurations. This property is leveraged to develop a genetic algorithm in section 4.2.3.

• In step 2, we are essentially performing an extended Houdayer move, but actually returning
all accessible pairs. To reduce the running time, one can just return a sample of the
accessible pairs. If we were to only use a Houdayer move to generate a new pair, the
process would still work but would be potentially much worse since many pairs would not
be considered.

• Regarding the running time, the main dependence is on how many iterations are performed
and how pairs are chosen in step 2, so that the overall running time is polynomial in the
input size. Indeed, if one considers all possible pairs in the pool of configurations this
gives more opportunities for a successful Houdayer move to happen but then one needs to
spend O(|P |2) time processing the pairs at each iteration. Denoting the number of spins
in a configuration by n, the processing of a pair mainly requires to find the Houdayer
clusters, which can be done in O(n2) time algorithm like Depth-First Search [43]. The
running time at each iteration is then O(|P |2n2).

• Moreover, as the algorithm keeps going the pool gets larger and larger so it could scale
very badly if the pool has many configurations. Instead, one can choose to simply pair
randomly the configurations in the pool for example, or also sample a certain number of
pairs out of the O(|P |2) available ones.

It is also important to note that this process does not ensure that all ground states are going to
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be found, which is simply due to the fact that the (extended) Houdayer move is not an ergodic
operation. This is due to the fact that starting from a certain pair at a certain total energy
level, there is no guarantee that the computation of local overlap and the choice of clusters to
flip allow to access all possible pairs at this energy level in the state space.

Experiments

The purpose of these experiments is two-fold as they both assess the efficiency of the algorithm
3 and also show the improvement gained by using the extended Houdayer move. Given a few
ground states of degenerate Ising problems with NGS ground states, we use the algorithm
3 in various ways in order to generate more ground states. In order to compare, we give
different numbers of ground states NGS

in to start with as input, and after the algorithm is
done we compare with the number of ground states at the output NGS

out . Note that this kind
of experiment is also performed in [42]. In the worst case, the algorithm does not manage
to generate anything so that NGS

out = NGS
in , while in the best case, the algorithm finds all the

ground states, i.e., NGS
out = NGS .

Computations are done on simple Ising models that in fact are instances of the Maximum Cut
problem on graphs of increasing complexity with unit edge weights. Three different instances of
triangular lattices are chosen (see figure 4.8) as they have many ground states and are not too
densely connected, giving a chance for our procedure based on the Houdayer move to be useful.
To get all ground states in each case, a brute-force procedure is applied as the size of the graphs
is not too big. We recall that a Maximum Cut instance for a graph G = (V,E) with unit edge
weight can be defined as the minimization of the Hamiltonian H(σ) = ∑

(v,w)∈E σvσw [19].

Triangular Lattice of size 4 by 3 Triangular Lattice of size 4 by 5 Triangular Lattice of size 6 by 5

Figure 4.8 – Triangular lattices of sizes 4× 3, 4× 5 and 6× 5, for which the maximum cut is
evaluated. They have NGS = 64, 150 and 225 ground states, respectively.

For every graph, we first run the algorithm only for one iteration, comparing how using the
extended Houdayer move over the original one can be beneficial in finding more ground states.
We also include the results still comparing the two strategies but this time performing the full
algorithm. That is, as we keep finding new ground states, we add them to the pool and start
again until nothing more can be generated.

As briefly mentioned earlier, step 2 of the scheme can take time proportional to the total
number of possible pairs from the pool. To speed it up, a simple tweak is to take only a sample
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of a couple pairs from all possible ones. In our experiments, we test this by repeating the
algorithm, sampling different number of pairs and comparing the performance. Results are
shown in figures 4.9, 4.10 and 4.11.
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Figure 4.9 – Comparison between the number of generated ground states compared to the
number of given ones for the MaxCut problem on the 4 by 3 triangular lattice (with NGS = 64).
The different plots show the difference when a different amount of pairs is sampled from the
pool.
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Figure 4.10 – Comparison between the number of generated ground states compared to the
number of given ones for the MaxCut problem on the 4 by 5 triangular lattice (with NGS = 150).
The different plots show the difference when a different amount of pairs is sampled from the
pool.

Having various graph complexities gives us a way to see how methods compare not only for
toy problems, but also for systems with many spins. In every case, the following behavior is
observed: running the algorithm for only one iteration already gives access to more ground
states when NGS

in is sufficiently large, in particular when using the strategy derived from the
extended Houdayer move, which can only perform better since it always access the same pairs
as the original Houdayer move, plus all additional ones. Things get even more interesting once
we perform many iterations and keep adding new optimal configurations to the pool, allowing
for many new ground states to be found. Indeed, especially when the number of pairs sampled
gets higher, it is often possible to find all ground states even from a couple given ones. For
example in figure 4.9 in the middle plot, with fewer than 20 ground states, we are able to find
the full set of 64 ground states that give the maximum cut value. Maybe impressively, this
behavior is observed even more sharply for higher-dimensional problems where for the largest
triangular lattice we see from figure 4.11 that even when taking only 50 pairs from a pool of
only 20 optimal configurations, we can find all 225 ground states. We also notice that the more
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Figure 4.11 – Comparison between the number of generated ground states compared to the
number of given ones for the MaxCut problem on the 6 by 5 triangular lattice (with NGS = 225).
The different plots show the difference when a different amount of pairs is sampled from the
pool.

sample pairs we take, the less difference between the different methods since we give more
opportunities to have successful Houdayer moves and thus reach new pairs of ground states.

4.2.2 Improved Sampling of Feasible Solutions in Constrained Problems

Consider the case of a constrained minimization problem, which defines a state space with
feasible and non-feasible regions. The feasible region is a subspace of the entire state space
whose elements respect all constraints of the problem, while the non-feasible region is comprised
of elements which violate at least one of the constraints. For such problems, even getting
in the feasible region can be a non-trivial task, so one is often interested in finding multiple
configurations that are feasible, and then choose the best among them. Ultimately, one
would like to be able to navigate the space of feasible configurations in order to carry out the
minimization directly in this space without having to worry about the constraints anymore.

Constrained problems represented by Hamiltonian

In this section, we still restrict to the case of the Ising model, so somehow there should be a way
to separate through the Hamiltonian whether a configuration is feasible or not. A simple way
to do so is to think of the Hamiltonian as a penalty function, assigning high values to infeasible
configurations in order to easily determine feasibility from the value of the Hamiltonian. In
theory, it would be convenient to have a Hamiltonian of the form

H(σ)

< +∞, if σ respects all constraints
= +∞, otherwise,

(4.1)

effectively encoding whether a configuration is feasible or not. This of course cannot be done for
any type of constraints since the Hamiltonian is restricted to be a function which is a quadratic
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polynomial. For now, we omit those details and explain later on which additional assumptions
are needed.

With this setup, algorithm 3 can be readily used by giving it a pool of feasible solutions. Note
that we are not concerned with how those solutions are actually previously obtained. Whatever
pair is chosen in the pool, its total energy is finite since all configurations are feasible, so that
after generating using the extended Houdayer move we only reach other pairs with finite energy,
that is none of them can have their Hamiltonian equal to +∞. This process thus help in
generating new feasible configurations from a set of given initial ones.

However in practice, we can never really have +∞ so this should be taken care of. One can
do so by setting the energy value to a very high positive number λ, so that any configuration
with energy ≥ λ is considered infeasible. But then, does the algorithm still works? As long as
during the (extended) Houdayer move, the energy of one the pair does not exceed the threshold
λ, then we are ensured that the move works.

Example 4.2.1. Suppose we have a Hamiltonian with H∗ = 0 and we are able to encode
feasibility by setting the penalty threshold at λ = 10. Ths way, every configuration with energy
higher than λ is considered infeasible.

Now, consider a pair of feasible configurations
(
σ(1),σ(2)

)
with H

(
σ(1)

)
= 8 and H

(
σ(2)

)
= 7,

from which we want to get more feasible configurations. After a successful (extended) Houdayer
move, the new pair has the same total energy of 15, but it could well be that one is 12 > λ while
the other is 3, not yielding two feasible solutions. In fact, if the configurations in the starting
pair have energy already close to the threshold λ, the procedure can fail.

In fact, there is a simple way to make the scheme work as we argue below.

Claim 4.2.1. Let H be the Hamiltonian corresponding to a constrained minimization problem,
with minimum H∗, and such that feasible solutions have their energy lower than the threshold
value λ. Then the scheme presented before is ensured to work only for pairs

(
σ(1),σ(2)

)
with

H
(
σ(i)

)
< λ+H∗

2 for i = 1, 2. Geometrically, this imposes that the energy values of both
configurations have to be closer to the minimum H∗ than the threshold λ.

Proof. Let
(
σ(1),σ(2)

)
be a pair with H

(
σ(i)

)
< λ+H∗

2 for i = 1, 2. Note that after the
Houdayer move, in the most extreme case, one of the configuration will see its value decrease
to the minimum H∗, while the other’s energy will increase by the same amount. Any change
in energy greater than that would be impossible as it would contradict the fact that H∗ is
a minimum. We thus check that the new value for the configuration which gets its energy
increased does not exceed λ.

W.l.o.g. suppose that the first configuration’s energy level decreases to the minimum H∗,
inducing an energy difference of ∆E := H

(
σ(1)

)
− H∗. From the assumptions, we have
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∆E < λ+H∗
2 − H∗ = λ−H∗

2 . Thus the second configuration’s new energy level becomes
H
(
σ(2)

)
+ ∆E < λ+H∗

2 + λ−H∗
2 = λ, still ensuring feasibility as desired.

Essentially, the higher the value of λ, the wider the range of possible pairs we can take into
account, so it makes sense to pick the largest finite number representable for λ. In the limit
case where λ→ +∞ we recover a Hamiltonian of the form of equation 4.1.

Overall, still using the same algorithm but with low-energy solutions in the starting pool, this
gives the ability to generate many more of them, which can be particularly useful in the context
of constrained problems where finding feasible solutions can be hard. With our procedure, we
can do so in a very fast and easy way and only require a handful of solutions to start with. The
process could be taken even further: now that we are able to explore the feasible space more,
can we continue the optimization process at the same time? We discuss it in the next section.

4.2.3 Further Optimization: A Genetic Algorithm

Consider a hard (constrained) minimization problem for which it is difficult to sample low-energy
solutions. Maybe through various optimization schemes one can get a couple of good solutions,
but this is often a very long process depending on the computing requirements. Here, we
construct a genetic algorithm which starting from an initial pool of solutions is potentially able
to continue the minimization process further. In the next section, it is tested on an actual
optimization problem coming from industry.

Structure of a Genetic Algorithm

There exist many ways to formulate genetic algorithms, but the core idea is that it is a procedure
which maintains a population of configurations (called individuals) that usually are set to be
initially random, and that evolve in a way which is supposed to imitate evolution, hopefully
getting us closer to lower-energy configurations [38]. The three main steps that the algorithm
iterates over are:

1. Crossover, in which the individuals in the population are combined in order to produce
offspring which have attributes coming from the parent individuals.

2. Mutation, in which individuals go through random transformations which produce new
individuals.

3. Selection, in which individuals that are believed to be the fittest (according to some
criteria) are kept in the population while others are removed in order to regulate the size
of the population.

Our algorithm follows this framework, making it simple to use and implement. Note that even
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though a genetic algorithm is a heuristic method, some convergence results exist [44] and they
are simple to implement which makes them still an attractive choice when solving optimization
problems.

Algorithm Description

In our case, the different steps of a genetic algorithm translate to the following:

1. Crossover
New offspring are generated by randomly pairing individuals in the population, and then
performing an (extended) Houdayer move to potentially reach new pairs.

2. Mutation
There is no specific mutation done in our case since we want to ensure that we stay at a
low-energy level. In a sense, the random part of the algorithm also comes from the way
the random pairing is done in previous step.

3. Selection
Individual which have a low energy are considered to be of better quality, thus the selection
process simply keeps the k individuals which have the lowest value for the Hamiltonian.
The parameter k is to be determined and fixes a limit on the size of the population.

A more precise description is given in algorithm 4.

Algorithm 4: Genetic Algorithm for Better Optimization
Input :Number of iterations N , Initial population P , Threshold k for the population size

limit
for n = 1 to N do

Construct a set of (random) pairs of configurations Q from P .
for q in Q do

Compute the local overlap and generate the set of all accessible unique
configurations C (see considerations from lemma 4.1.2) from pair q.
P ← P ∪ C

end
Retain k configurations from P with lowest energy values.

end
return P

There are in fact many degrees of freedom here where different variants of the algorithm can
be used depending on also how much computing power one wants to spend generating new
configurations.

• Random pairing of individuals in the population
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Just as in the algorithm from section 4.2.1, the pairing of individuals can be done in various
ways. Assuming high computing power, considering all pairs of individuals maximizes the
chance of successful creation of new pairs during the crossover phase. Since the population
size is limited by k, the complexity of this step is of order O(k2). In practice, this is
unfortunately a time-consuming operations given that for each pair, all possible new pairs
have to be computed.

A solution to this issue is to once again consider only a small sample of p pairs out of all
possible ones, which can drastically reduce the running time. Indeed, the number of pairs
is simply always constant with respect to the population size, yielding a complexity of
O(1) . However with this approach, it can often happen that not all individuals in the
population are used. Indeed, if there are 100 individuals, but we only consider 10 random
pairs, many of the individuals are not used at all in the process.

A second solution is to simply randomly pair the elements of the population. With a
population size of k individuals, bk/2c pairs are created, giving now a linear complexity
O(k).

• Move to execute when generating offsprings

During the crossover phase of the algorithm, the idea of the extended Houdayer move is
used in order to generate all possible pairs at the same energy level. However since the
number of accessible pairs can be large, it can take too long to compute all clusters in the
overlap and then find all combinations. Hence, at this step it can make sense to trade the
computation of all pairs as done in the extended Houdayer move to a simple Houdayer
move which only produces one new pair. This of course depends on how successful the
creation of new pair is, which itself depends on whether there is only one Houdayer cluster
in the local overlap. Note that one could also sample some of the reachable pairs in the
same spirit as the greedy version of the extended Hoduayer move (section 4.1.4).

• Customize the selection process

During the selection process, the best k individuals are chosen in terms of their energy
which is a greedy strategy. Unfortunately what can happen is that given a certain
population, new offsprings created have a higher or same energy level, preventing them
from being retained for the next iteration. At this point, the algorithm is stuck since it
cannot generate any new individuals with low enough energy.

One remedy to this problem when creating the new population is to force a certain
fraction of the individuals to come from the offsprings, and another fraction to be from
previous population. This way, even though we may keep individuals with higher energy
coming from the offsprings, it ensures more variety in the population. To even allow for a
balance, one can even change the fraction at each iteration, reducing slowly the number
of considered offsprings to allow convergence to happen.
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4.3 An Industry Problem: Sequential Scheduling

This section introduces the main optimization problem of this thesis. A description is given
and a mathematical formulation is derived, with the goal of designing an Ising system such
that minimizing its energy is equivalent to getting the optimal solution of our problem. We
demonstrate how to adapt it in order to be able to use the techniques presented previously and
test their effectiveness by performing several numerical experiments.

We refer to the problem of interest as the "sequential scheduling" problem, and describe its key
features below. For large enough instances, finding a feasible solution to this problem can be
challenging, due to the non-trivial structure of the constraints. The goal is to come up with
an alternate methodology inspired from physics-based algorithm (like the Houdayer move) in
order to better solve the problem and attain the feasible region. In particular, we ask two
questions. Is it possible to generate many (uncorrelated) feasible solutions of the problem and
also reduce the processing time to do so? And if so, can the optimization go further and yield
higher-quality solutions?

4.3.1 Description

The problem studied is concerned with sequential scheduling, where one is interested in
scheduling the processing of certain items in order to minimize the time spent processing
them. At the same time, some constraints are expected to be met in terms of number of items
processed and in terms of space constraints.

In its simplest form, the problem can be described in the following terms. There are two entities,
called A and B. Every day, entity A runs for a certain number of hours and is able to produce
a certain number of items, and entity B is able to process a certain number of items that come
from entity A. In between the two, there is a cache which is able to hold some items, as it may
happen that entity B processes less elements than entity A produces. The setup is depicted in
figure 4.12. As an example, entities could be computing units producing and processing jobs.
Part of a job is processed by entity A while the other part is done by entity B. In between, the
cache would represent some kind of queue in that case.

The goal is to process a certain amount N of items from entity B at the end of a specified time
period, which for simplicity here we will take to be n days. Additionally, we wish to minimise
the total operating time of the entities, while ensuring that the cache never overflows. Here,
we will measure the operating time of the entities in hours. In more complex formulations of
the problem, the number of items processed is required to fall in a range [(1− δ)N, (1 + δ)N ],
where δ ≥ 0, instead of being exactly equal to N . For every day k ∈ {1, 2, . . . , n}, we need to
choose the number of hours A runs from a set of numbers Ak, and the number of hours B runs
from a set of numbers Bk. In this simple version of the problem, we assume that one hour of
running time amounts to one item produced or processed. The cache in-between can hold a
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Figure 4.12 – A simple depiction of the setup for the sequential scheduling problem. Entity
A produces items which are then fed to entity B for further processing. In between, there is
a cache which can hold items in case entity B is not able to process as much as entity A is
outputting.

maximum of Z items at any point in time.

4.3.2 Mathematical Formulation

A formulation is described using binary variables, since the goal is to apply the Houdayer move
to generate new feasible solutions from given ones. To find feasible solutions, it is much simpler
to use a formulation which uses discrete variables and not binary ones. One can then use for
example a simulated annealing procedure to solve that problem. However in order to use our
improved sampling schemes, we are constrained to work in the Ising (or equivalently QUBO)
model since it is based on the Houdayer move. On the good side, given that the Houdayer
move only depends on the graph topology and not the strengths of the interactions between
variables, we need not care about the weights Jij of the Ising problem.

Since we need to decide for each day on the number of hours for each entity, we define decision
variables precisely for that. In particular, let xAka be the variables which decide whether on
day k the number of hours a ∈ Ak is chosen, and similarly let the variables xBkb decide whether
b ∈ Bk is chosen. To have a simpler view of the objectives and constraints, let us denote the
cache value on day k as C(k) and the amount produced by entity A and B on day k by A(k)
and B(k) respectively. With this simplified notation we can rewrite our requirements as:

• The total number of hours for entities A and B should be minimized, i.e., we should
minimize ∑n

k=1A(k) +B(k).

• For every day and every entity, only one possible number of hours can be chosen among
the available ones.

• The cache value must never exceed the limit Z. Note that we have the following equation
which relates the cache value from one day to the next one: C(k) = C(k−1)+A(k)−B(k).

• At the end of the n days, the number of items produced and processed ∑n
k=1B(k) should

be equal to N . Since the values B(k) depend on the cache throughout the days, we can
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rewrite this in terms of entity A as how much it produced, minus the cache value on the
last day (since it is not processed by B in time). So we want (∑n

k=1A(k))− C(n) = N .

Using the binary variables xAka and xBkb defined before, note that we have A(k) = ∑
a∈Ak ax

Ak
a

and B(k) = ∑
b∈Bk bx

Bk
b . The requirements translate to the following constrained minimization

problem:

Minimize
n∑
k=1

∑
a∈Ak

axAka +
∑
b∈Bk

bxBkb

 (4.2)

Subject To:
∑
a∈Ak

xAka = 1 ∀k ∈ {1, 2, . . . , n},

∑
b∈Bk

xBkb = 1 ∀k ∈ {1, 2, . . . , n},

m∑
k=1

∑
a∈Ak

axAka −
∑
b∈Bk

bxBkb

 ≤ Z ∀m ∈ {1, 2, . . . , n},

n∑
k=1

∑
a∈Ak

axAka −

 n∑
k=1

∑
a∈Ak

axAka −
∑
b∈Bk

bxBkb

 = N.

This is thus a binary constrained linear program formulation of the problem, but recall that
all we used so far is applicable to Ising type of problems (or equivalently QUBO problems as
mentioned in section 2.1.1 since we are dealing with binary decision variables). In next section,
we describe how one can convert the various constraints into quadratic polynomials in order to
have a proper QUBO formulation.

4.3.3 Converting the Problem to QUBO Formulation

Essentially, the entire formulation given previously should be turned into a quadratic polynomial
which is able to represent at the same time the minimization objective together with the various
constraints to be respected. The way we do so is similar to the method employed in [45].

A simple way to deal with equality constraints is to introduce quadratic penalties (see chapter
5 in [46]). Consider the simple minimization problem
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Minimize
n∑
i=1

cixi

Subject To:
n∑
i=1

bixi = B.

One can turn the constraint ∑n
i=1 bixi = B into the penalty term (∑n

i=1 bixi −B)2 giving rise
to the new minimization problem

Minimize
n∑
i=1

cixi + λ

(
n∑
i=1

bixi −B
)2

,

where λ > 0 is a parameter indicating how stringent the penalty is.

With this, the set of optimal feasible solutions (if they exist) is identical to the one of the
constrained version of the problem, since any feasible solutions incurs a penalty of 0 in the second
version. Moreover, since this is a quadratic penalty term only involving linear combinations of
the decision variables, the overall function to minimize is still a quadratic polynomial.

Converting all equality constraints to penalty terms using the same penalty λ > 0, we can turn
4.2 to

Minimize
n∑
k=1


∑
a∈Ak

axAka +
∑
b∈Bk

bxBkb

+ λ

∑
a∈Ak

xAka − 1

2

+ λ

∑
b∈Bk

xBkb − 1

2


(4.3)

+ λ

 n∑
k=1

∑
a∈Ak

axAka −

 n∑
k=1

∑
a∈Ak

axAka −
∑
b∈Bk

bxBkb

−N
2

Subject To:
m∑
k=1

∑
a∈Ak

axAka −
∑
b∈Bk

bxBkb

 ≤ Z ∀m ∈ {1, 2, . . . , n}.

Already at this intermediary step, there is an issue that makes the use of Houdayer moves
completely useless, which is due to the last penalty term involving the volume. Indeed, if one
expands the what is inside the squared term, there is

(∑n
k=1

(∑
a∈Ak ax

Ak
a −

∑
b∈Bk bx

Bk
b

))2

which appears, essentially pairing all the binary variables. This means that the induced topology
is that of a complete graph, making it impossible for the Houdayer move to be successful
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(see 3.4.4). Hence, we should find a way to reduce the graph connectivity, or the interactions
between variables, without changing the problem itself.

After using multiple tricks which we cannot reveal here because of confidentiality issues, we can
find a way to break the connectivity of the graph and formulate a new version of the problem
which induces a much less dense graph connectivity, allowing the use of Houdayer moves. Note
also that in the previous formulation, the minimization problem is still a constrained one
because of the inequality constraints for the cache level on each day. We thus need to turn
these inequalities into quadratic penalties, and to do so we just need to transform them into
equality constraints with the help of "slack" variables (see chapter 4.1 in [46]).

After this conversion process, even though the new formulation might be complicated, it is in
the form of a QUBO formulation, and if one expands everything, the minimization is done
over a function of the type Q(x) = ∑

i,j Qijxixj + ∑
i xi as needed, where x ∈ {0, 1}d is a

vector collecting all d binary variables in the formulation. From there, it is easy to retrieve the
interactions (which correspond to edges in the underlying graph) and use the Houdayer move.
As last technical detail, the Houdayer procedure only works in the Ising model (so variables in
{−1, 1}) which is not the case here so we should ensure that the right topology is being used.
In fact, we know from proof of lemma 2.1.1 that one can apply a linear map to go from Ising
to QUBO and vice-versa. Even though this means the weights of the interactions change, the
interactions themselves in the two models remain between the same variables, so that the graph
is identical when not considering edge weights.

4.4 A Modified Topology

From previous sections, the sequential scheduling problem can be seen as minimizing the
Hamiltonian of an Ising system, thus inducing a certain graph topology. After converting
the graph topology which was first a complete one into a more disconnected one, we ask the
following question: with such a connectivity, how good can we hope the Houdayer to perform?
In order to test this, we complete the following small experiment: taking the same instance but
making the number of days vary, we each time pick 100 random pairs of configurations and
see whether the Houdayer move is successful in this case. This is repeated 100 times for each
number of days, so that the results can be visualized in the form of boxplots. With this, we
aim know more at least in the random case about how often the move fails, and if the number
of nodes plays a role in it.

Figure 4.13 shows at least promising results, considering that the ratio of successful Houdayer
move can be strictly greater than 0 for every instance. An interesting detail to distinguish is
that as the instances get more complex (larger number of days), it induces graphs with a larger
number of nodes, seemingly giving higher and higher odds of success for the Houdayer move.
Notably, for instances with 40 days or more, the success ratio can be larger than 0.1. In the
next section, experiments are conducted this time using actual feasible solutions in order to
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Figure 4.13 – Multiple boxplots showing the ratio of successful Houdayer moves when taking
random pairs on various instances of the sequential scheduling problem. The number of days is
slowly increased from 5 to 50 days.

create more of them using the techniques from section 4.2.

4.5 Numerical Results

We present in this section how the algorithms developed in this chapter can be applied in the
context of the sequential scheduling problem. Experiments are performed in order to understand
how such techniques can help when solving a hard optimization problem.

For all experiments, the instances chosen have the following specificities:

• The number of days n varies from one instance to the other.

• The number of items output is equal to N = 8n, but need not be precisely equal to that,
and can fall in a range [(1− δ)N, (1 + δ)N ], as mentioned in section 4.3.1.

4.5.1 Generating Feasible Solutions

A first step is to use the idea that with low energy solutions, Houdayer-like moves give the
possibility to generate more of such solutions. Indeed, we know from section 4.2.2 that in theory
this can work well, but what about the topology induced by the sequential scheduling problem?
In order to explore this, we perform one iteration of the algorithm presented in section 4.2.1
when starting with a pool of 50 feasible solutions of the problem. Since there are 50 solutions,
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there are
(50

2
)

= 1225 unique pairs to be used to generate new ones using a Houdayer-like move.
We consider instances from 10 to 90 days, by steps of 10, and for every instance the value for
relaxing the range of number of items produced takes values such that nδ ∈ {5, 10, 15, 20}.

Figure 4.14 depicts various results about how often and how many new solutions are generated,
and whether they are feasible. For each day, we compute these values for all for instances
(varying the δ value), and plotting results as boxplots. The leftmost plot highlights the most
important to us: it is possible to generate new solutions for the sequential scheduling problem.
This also appear to once again show that an increased number of days (and thus of nodes)
yields better and better generation results as observed in section 4.4. But what about the
feasibility of the solution found after a successful move?
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What proportion of generated solutions are actually feasible?

Figure 4.14 – Various results about how good Houdayer moves can be in the context of the
sequential scheduling problem. From left to right, one can visualize the ratio of successful
Houdayer moves, the number of new solutions produced, and finally the ratio of solutions that
are actually feasible.

Recall from our QUBO encoding of the problem that if we take a very large coefficient λ for the
penalty (essentially infinite), then we expect that whenever a Houdayer-like move is successful
on a pair of feasible solutions, the resulting pairs are all feasible too. This is actually what can
be seen on the rightmost plot, which shows that whenever new pairs are found, they are always
feasible.

In figure 4.15, the costs of generated solutions are shown for two instances with different number
of days, namely 50 and 80 days. There are two interesting things happening here: first, the
algorithm is able to generate new feasible solutions which is already a big step. Indeed, for a
very specific set of pairs which is given as initial pool, and not just some random configurations,
it can lead to many successful Houdayer moves. Not only that, one can notice a variety of
different energy levels in the configurations that are generated, and most interestingly it can be
seen that some of the new solutions have lower energy than any of those in the initial pool.
This in particular motivates the use of some kind of heuristic (which in our case turns out to
be a genetic algorithm) in order to generate solutions with increasingly lower energy values.

Comparing the two plots in figure 4.15, it seems that the more complex the sequential scheduling
instance is, the more successful the Houdayer moves can be since more feasible solutions are
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Figure 4.15 – Visualization of the feasible solutions generated and their costs when using the
algorithm from section 4.2.1 for one iteration. Each point corresponds to a specific solution,
and a dashed purple line indicates the lowest level of energy present in the initial pool. Left
plot shows results on an instance on 50 days and with δ = 0.4 while right plot is for an instance
on 80 days and with δ = 0.4.

created. Also, more of them end up having a lower energy value than the smallest one in the
initial set of solutions. This can be also seen through the histograms in figure 4.16, where we
can essentially visualize the distribution of the costs of the generated solutions when using
different strategies for generation.

As expected, using the extended Houdayer move yields more solutions, but in general they tend
to have an energy value close to those from the initial pool. Specifically, the new costs tend to
more or less follow the same distribution as the one of the solutions in the initial pool. This
maybe suggests that the variety of solutions produced by the algorithm depends on those given
as input.

4.5.2 Improving Optimization with the Genetic Algorithm

The results in the previous section show that even for a constrained problem where getting
feasible solutions is non-trivial, we are able to "navigate" within a subspace of the feasible space,
reachable by using the techniques developed. The next goal is then to not only explore this
region, but to continue the optimization process in order to lower the energy of solutions, which
is exactly the purpose of the genetic algorithm presented in section 4.2.3.

This time we consider an even bigger instance of the problem, one on 365 days and with δ = 0.4.
The genetic algorithm is run for 10 iterations, and fixes a limit of k = 1000 on the population
size. At each iteration, it picks at most 1000 random pairs from all possible ones induced by
the current population and computes all accessible pairs. Once all is generated, it keeps the
0.8k = 800 solutions with lowest energy out of those newly generated, 0.1k = 100 are chosen
randomly from that same set (different from the ones selected in previous step), and 0.1k = 100
are randomly chosen from the previous population. This choice comes from the fact that one
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Figure 4.16 – Histograms of the costs of solutions on an 50-day instance (left plot) and an
80-day instance (right plot). More precisely, it shows superimposed histograms of the costs for
the initial pool of solutions (dark blue), for the solutions created when using just the Houdayer
move (light blue), and for the solutions created when using the extended Houdayer move (pink).

also wants to keep solutions from the past which are very good, also allow for new good ones to
come, but also keep a fair share of randomness to not get stuck in local minima.

Looking at the various cost values of the generated solutions in figure 4.17, they are now clearly
tilted towards lower energy values. In total, starting from a pool of 25 feasible solutions with
minimum cost of 5595, more than 250’000 new unique feasible solutions are produced, many of
which are lower than the minimum initial cost.

In terms of the variety of solutions generated, more can be said when as doing follows: after
generating solutions, interpret them as vectors. For example, in a 2-day instance where entity A
works 5 hours on day 1 and 8 hours on day 2, while entity B works 7 hours on day 1 and 4 hours
on day 2, we collect this as vector [5, 8, 7, 4]>. From there, one can compare how close solutions
are by computing some similarity measure between vectors such as the cosine similarity [47],
defined as SIM(u,v) := u·v

‖u‖·‖v‖ . A glance at figure 4.18 reveals that although constrained to a
cosine similarity in the range [0.9, 1], the solutions are still varied since there is a concentration
around the similarity value 0.91.

Finally, we also look at how the optimization process evolves in terms of energy. In the left
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Figure 4.17 – Histogram (left) and boxplot (right) to visualize the distribution of the costs of
the solutions generated when using the genetic algorithm.
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Figure 4.18 – Histogram (left) and boxplot (right) to visualize the distribution of the cosine
similarity between the solutions generated when using the genetic algorithm.

plot of figure 4.19, for each iteration, the current best energy level is shown. A lower bound on
the cost is also depicted and it is computed as follows: since for n days the number items to be
produced is 8n, but we can be off by a factor δ, the lowest target number is 8n(1− δ). To get
to that number, both entities would have to operate at least this number of hours (since in the
end for each day only a couple of possible working hours are proposed). As such, the lower
bound on the cost is given by 2 · 8n(1− δ) = 16n(1− δ). On the right plot, one can see at each
iteration of the genetic algorithm how many new solutions are generated. It is informative of
something which is very typical that happens in such an algorithm: the first iterations are able
to generate an increasing amount of feasible solutions up to a peak, after which the number
goes down to zero. Note that depending on the tuning of the parameters of the algorithm, one
can make it so that the generation is more or less uniform through the iterations.

4.5.3 Summary

Overall, these experiments highlight the following points:

• One can use Houdayer-like moves in order to generate low-energy solutions, which in our
case correspond to feasible solutions. Within these solutions, the energy spans a range
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Figure 4.19

of values which at the same time shows how the method can attain solutions which are
different from the starting ones, but the energy values nevertheless fall into a range which
is not too far from those of the starting pool. Thus it is believed that the starting set is
important as it will partially determine the variety of solutions generated.

• Once one knows how to navigate part of the feasible region through Houdayer moves,
attempting to continue the optimization process is made possible by using the genetic
algorithm. Here, the encouraging results suggest that lower and lower solutions can be
found up to a certain point. Indeed it is always good to keep in mind that since the
(extended) Houdayer is not ergodic, it is not possible to explore the entire feasible region
with this algorithm. Nonetheless, it gives access to a variety of solutions at neighboring
levels of energy which can help escape local minima.

• For the simple version of the sequential scheduling problem considered here, we were
in fact able to reach a solution whose energy corresponds to the lower bound by using
simulated annealing. However, this may no longer be true in more elaborate versions of
the problem, for example with multiple caches and more complex layouts. In such a case,
the simulated annealing procedure might reach the feasible region but fail to reach the
ground states, which is where the genetic algorithm developed would then be used.
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5 Experimental and Theoretical Dis-
cussion of Mixing Time

So far, we developed various schemes stemming from the idea of the Houdayer move and tested
their efficiency through multiple experiments. From these, it seems relatively clear that using
the (extended) Houdayer move improves convergence to equilibrium compared to a simple
single-flip strategy. In this chapter, we attempt to study these behaviors more precisely and
explore the theoretical aspect of convergence using tools from Markov chains theory.

5.1 Markov Chains and Mixing Time

Maybe one of the most useful quantities one can get about Markov chain is about how fast
the process converges to the stationary distribution. This is captured by what is called the
mixing time, and it has been extensively researched for multiple types of Markov chains related
to the Ising model [20]. In particular, the mixing time of slightly different versions of the heat
bath dynamics have been studied, where the Metropolis acceptance scheme is replaced by the
Glauber acceptance one [21]–[23]. However in these, only the ferromagnetic case is considered,
and the behavior in the general spin-glass model is yet unknown. For cluster Monte-Carlo
moves, some advances have been made in studying the Swendsen-Wang algorithm that we
described in section 3.3.1, in particular comparing it to the heat-bath dynamics [24], [25]. Here,
we keep our focus on the single-flip strategy with Metropolis acceptance, and consider what can
happen once we combine it with the (extended) Houdayer move. As we will see, this endeavor
entails inspecting the spectral structure of the transition matrix of the various Markov chains.
To begin, we define some basic notions such as the distance between probability distributions.

Definition 5.1.1 (Total Variation Distance). The total variation distance between two proba-
bility distributions µ and ν on a discrete set S is defined as

‖µ− ν‖TV = 1
2
∑
x∈S
|µ(x)− ν(x)|.
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Definition 5.1.2 (Mixing Time). Let P be the transition matrix of an ergodic Markov chain
with limiting and stationary distribution π. Denoting by δx the distribution which starts on
state x ∈ S (i.e., δx(y) = 1{x = y} ∀y ∈ S), define

c(n) = max
x∈S
‖δxPn − π‖TV , (5.1)

the maximum total variation distance between the distribution after n time steps and the
stationary distribution, starting from any state x ∈ S. With this, one can define the mixing
time as

t(ε) = inf{n|c(n) ≤ ε}.

This is the minimum number of time steps required so that the distance c(n) is lower than some
specified ε.

There is then a very interesting upper bound on the total variation distance in equation 5.1 as
the number of steps n grows. It can be found in the proof of theorem 12.4 in [20], and we first
define some important quantities.

Definition 5.1.3. Let P be the transition matrix of a reversible and ergodic Markov chain.
Then, letting λ1 ≥ λ2 ≥ · · · ≥ λ|S| be the eigenvalues of P , we can define two quantities. The
first one is denoted by λ∗ := max{|λ| : λ is an eigenvalue of P, |λ| 6= 1}. The second one,
defined by γ := 1− λ∗ ∈ [0, 1], is called the spectral gap.

Theorem 5.1.1. Let P be the transition matrix of a reversible and ergodic Markov chain, and
let πmin = minx∈S πx. Then, letting λ1 ≥ λ2 ≥ · · · ≥ λ|S| be the eigenvalues of P , we have
that λ1 = 1 and |λi| < 1 ∀i ∈ {2, 3, . . . , |S|}. This means we can rewrite λ∗ = max{λ2,−λ|S|}.
Moreover, the following bound on total variation holds:

max
x∈S
‖δxPn − π‖TV ≤

λn∗
2√πmin

= (1− γ)n
2√πmin

≤ e−γn

2√πmin
. (5.2)

In fact, it can be slightly strengthened when considering all eigenvalues and not just λ∗ (see
lemma 12.2 in [20]).

This theorem essentially says something crucial about the convergence of Markov chains to
equilibrium: it has a strong dependency on the eigenvalues of P , which motivates the ideas in
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this chapter. Since this is only an upper bound, it could be that the convergence is not entirely
ruled by the spectral gap, but it is still interesting to study the behavior of Metropolis chains
when we add Houdayer-like moves.

5.1.1 Computing Transition Matrices of Houdayer-like Moves

Here we consider the simplest version of the Houdayer move, that is we start with a pair
of configurations and then perform a single-flip on each of the configurations independently,
followed by a Houdayer move, in which case the result depends on both configurations.

Denoting by PSF the matrix representing the transition matrix of the Metropolis scheme with
the single-flip strategy, and by PH the transition matrix for a Houdayer move, we wish to study
the dynamics defined by doing a Houdayer move followed by a single flip. When studying
the extended Houdayer move, we denote the corresponding transition matrix by PH+ . Since
the Metropolis scheme is applied on both configurations independently, the corresponding
transition matrix when working on pairs is given by the Kronecker product PSF ⊗ PSF . The
overall procedure when adding the Houdayer move can be written by PH(PSF ⊗ PSF ) (or
(PSF ⊗ PSF )PH if the single-flip is done before the Houdayer move).

The first step before being able to analyze the Houdayer move is to find a way to compute the
corresponding transition matrices. Note that for an Ising model with n spins, the corresponding
space of configurations is given by S = {−1, 1}n so that there are 2n configurations. Since
the transition matrix captures all transitions from one element of the space to the other, it
has 2n rows and 2n columns, inducing a total size of 2n · 2n = 22n. That is, considering 10
spins, the resulting matrix has about one million entries. When using the Houdayer move, we
employ pairs of configurations, and thus work in the space S × S = {−1, 1}n × {−1, 1}n, which
has total size 22n. The resulting matrix then has 24n entries, so that for a very simple system
with 5 spins, the number of entries in the transition matrix is already about one million. This
restricts how much can be done through numerical simulations since the memory required to
store transition matrices grows extremely fast with respect to the number of spins n, but we
can nonetheless still determine what those matrices look like for very simple instances.

To compute the transition matrices, we do the following simple scheme: we go through every
possible transition and compute the corresponding probability numerically. For example, to
compute PSF we go through all possible transitions from a configuration σ to configuration
σ′, and compute the probability according to the Metropolis procedure from section 3.1.1. To
then compute the behavior of the single-flip strategy on independent pairs, we just need to
compute PSF ⊗ PSF as mentioned earlier. For the Houdayer transition matrix PH , we have to
compute all transitions from a pair (σ(1),σ(2)) to a pair (σ′(1),σ

′(2)), which is done by actually
computing the local overlap as explained in section 4.1.1 and retrieving the corresponding
probabilities to reach each attainable pair depending on the Houdayer clusters arising from
(σ(1),σ(2)).
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Once these are determined, we can use tools to numerically compute the values of interest like
the eigenvalues and the spectral gap.

5.2 Spectral Gaps and Eigenvalues

A detail to notice first is that when studying the spectrum of composition of two matrices, the
order in which they are applied does not matter. In our case, this means that applying the
Houdayer move before or after the single-flip does not change the eigenvalues. This comes from
the following:

Lemma 5.2.1. Let A,B ∈ Rn×n be two matrices. Then AB and BA have the same eigenvalues.

Proof. Let v be an eigenvector of AB with corresponding non-zero eigenvalue λ > 0. Then we
have

λBv = B(AB)v = (BA)Bv,

which means that Bv is an eigenvector of BA with the same eigenvalue. For the case where 0
is an eigenvalue of AB, we then have that

0 = det(AB) = det(A) det(B) = det(BA),

implying that zero is also an eigenvalue of BA.

5.2.1 Results for the Houdayer Move

One first interesting question to ask is, since the addition of Houdayer moves seems to improve
convergence, is this reflected in the spectral gap? As a first experiment, we create many
instances of Ising spin-glass models (with bonds distributed as Jij ∼ N (0, 1)) and compute
both the transition matrix when doing a single-flip procedure on pairs (that is PSF ⊗ PSF )
and the one when adding the Houdayer move (that is PH(PSF ⊗ PSF ) ), and compare their
spectral gap. That is, denoting the spectral gap of a transition matrix P as γ(P ), we compute
γ(PH(PSF ⊗ PSF ))− γ(PSF ⊗ PSF ).

As graph topologies, we consider simple examples on 4 spins with square lattice and Erdös-Rényi
graphs with parameter p = 0.4, 0.5 and 0.6. For each, 500 instances with random bonds are
generated and the transition matrices are computed at inverse temperature β = 0.1. The
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Figure 5.1 – Histograms showing spectral gap differences, when using the Houdayer move, and
when just employing the single-flip dynamics.

spectral gaps are then determined and the difference is computed, yielding results in figure 5.1.

The histograms seem to highlight a pretty clear observation: the spectral gap of the transition
matrix when using a Houdayer move is always greater or equal than the transition matrix of
just single-flips since all the differences are positive. It is then interesting to note the different
patterns of histograms depending on the topology chosen. For example for the lattice, the
differences are concentrated in the range [0, 0.025], essentially saying that spectral gaps are
quite close for all instances. But this is not the case when considering random graph topologies,
where we see that there is much more spread in the spectral gaps differences.

We push the experimentation further to see whether the inverse temperature has a role to play
in it. For that, we instantiate some Ising spin-glass systems with number of spins up to 8 and
compute spectral gaps for many different inverse temperatures in order to discover whether the
addition of the Houdayer move gives a higher spectral gap at all temperatures. The plots in
figure 5.2 depict the resulting spectral gaps, from which we can comment the following:

• The spectral gap when using the Houdayer move is always larger than when it is not used.

• After a certain temperature (which in the figure seems to be around β = 0.2 in our
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Figure 5.2 – Plots of spectral gap for both single-flip strategy and with the addition of the
Houdayer move as a function of β. Each plot corresponds to a different graph topology.

examples), both spectral gaps seem to be equal.

• There is a certain inverse temperature β at which each procedure reaches a maximum
spectral gap.

From even more extensive numerical computations which seem to always confirm the results seen
ealier, we formulate a conjecture relating the spectral gap of the dynamics with the Houdayer
move, and the dynamics without it.

Conjecture 5.2.1.1. Let PSF ⊗ PSF ∈ RS×S be the transition matrix of the Metropolis
procedure with single-flip on pairs of spin configurations, and PH(PSF ⊗ PSF ) ∈ RS×S the
transition matrix of the same procedure, but augmented with the Houdayer move. Then, we have

γ(PH(PSF ⊗ PSF )) ≥ C · γ(PSF ⊗ PSF ), (5.3)

for some constant C ≥ 1.
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5.2.2 Some Comments About the Single-Flip Dynamics

For every experiment performed where the spectral gap is visualized as a function of the inverse
temperature β, there is always one thing one can observe: the spectral gap increases in value
up until it reaches a maximum, after which it decreases. Moreover around the maximum, it
seems like the value of the spectral gap changes abruptly. This is in fact due to the fact that
λ∗ = max{λ2, λ|S|} (see theorem 5.1.1), or equivalently γ = 1 − λ∗ = min{1 − λ2, 1 + λ|S|}.
Through more extensive experiments one can actually see that for values of β after the maximum
spectral gap is reached, it is always the case that λ∗ = |λ2|, while for values of β lower than
when the maximum spectral gap is attained, we have λ∗ = |λ|S||, which explains the behavior
observed.

Moreover, these observations lead us to believe that both λ2 and λ|S| are increasing as the
value of β increases. This has already been proved for particular setups of the Ising model [48].
Indeed, we have the two cases:

1. When λ∗ = λ2 is chosen, the spectral gap γ = 1− λ2 in this case decreases as β increases,
which means λ2 increases.

2. When λ∗ = −λ|S| is chosen, the spectral gap γ = 1 + λ|S| in this case increases as β
increases, which means λ|S| increases.

Thus we formulate the following conjecture:

Conjecture 5.2.1.2. Consider any Ising spin-glass system, and suppose that one uses the
Metropolis dynamics with single-flip to simulate it. Let λi, 1 ≤ i ≤ |S| denote the ordered
eigenvalues of the transition matrix of the induced Markov chain. Then, looking at these values
as a function of the inverse temperature β, we have that

dλ2
dβ
≥ 0 and

dλ|S|
dβ

≥ 0.

5.2.3 Results for the Extended Houdayer Move

We now shift our focus to the particular case of the extended Houdayer move, when we make
the uniform choice when selecting combinations of Houdayer clusters (see section 4.1.1). We do
so since in this case the transition matrix for the move has a particular form which can make it
easier to analyze the whole dynamics when combined with the single-flip procedure.

First, the experiment where we compute the spectral gap as a function of the temperature for
different topologies is repeated, but this time including the results for the extended Houdayer
move. One can observe in figure 5.3 three types of outcome for different instances of the
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Figure 5.3 – Plots of spectral gap for both single-flip strategy and with the addition of the
Houdayer move and its extended version as a function of β. Each plot corresponds to a different
random graph.

ER(n = 5, p = 0.4) random graph. Either both the Houdayer move and the extended one
yield the same spectral gap, either there is a slight difference between the two where for a
certain range of temperature, the extended version can reach a higher spectral gap. The third
possibility is that the extended version yields a spectral gap which is quite larger from that of
the original Houdayer, but only for low values of β. Indeed, in any case, we note that for β
large enough, all spectral gaps seems to be identical.

While running the experiments, we also noted the following: the more connected the graph is,
the bigger the difference between the spectral gap of the Houdayer move versus its extended
version. However, once full connectivity is reached, we know that all methods are equivalent so
that their spectral gaps coincide. In general, these results seem to suggest that the spectral
gap for the extended Houdayer move is larger than the other methods. However, looking more
closely at it, figure 5.4 reveals that actually the original Houdayer move can have a very slightly
larger spectral gap than the extended version once β gets large enough. However a similar
conjecture as the one in 5.2.1.1 can be stated but using PH+ instead of PH .

Next, we prove some results about the structure of the transition matrix PH+ of the extended
Houdayer move.

76



Experimental and Theoretical Discussion of Mixing Time Chapter 5

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Inverse Temperature 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sp
ec

tra
l g

ap
 

Spectral Gap as Function of Inverse Temperature (ER(n = 5, p = 0.4))
Single-Flip with Houdayer
Single-Flip with Extended Houdayer

0.117 0.1177 0.1184 0.1191 0.1198

0.290

0.291

Figure 5.4 – Plots of spectral gap for both single-flip strategy and with the addition of the
Houdayer move as a function of β. The smaller plot is a zoomed in version where β is in the
range [0.117, 0.2].

Lemma 5.2.2. Suppose we perform the extended Houdayer move on the state space S × S,
and let C denote the set of clusters which partitions the space into pairs that are accessible from
one another (that is, every C ∈ C is a set of pairs). Let PH+ ∈ RS×S be the matrix defined by
the extended Houdayer move, where the choice of combinations of Houdayer clusters is done
uniformly at random. Then PH+ is a symmetric projection matrix with rank |C|.

Proof. We show that P 2
H+

= PH+ . First note that this version of the extended Houdayer move
partitions the state space S × S into a set of clusters C. Note that these clusters have nothing
to do with Houdayer clusters. In this case, every cluster C ∈ C is a set of pairs of configurations
which are all accessible from one another through the cluster move. Moreover, when given a
certain pair p ∈ C, the probability to reach pair q ∈ C is uniform, i.e. P(p→ q|p, q ∈ C) = 1

|C| .
In general, for p, q ∈ S × S, we can write using the law of total probability that

(
PH+

)
p,q

=
∑
C∈C

P(p→ q|p, q ∈ C)P{p ∈ C, q ∈ C}

=
∑
C∈C

P(p→ q|p, q ∈ C)1{p ∈ C, q ∈ C}

=
∑
C∈C

P(p→ q|p, q ∈ C)1{p ∈ C}1{q ∈ C}

=
∑
C∈C

1{p ∈ C}1{q ∈ C}
|C|

, (5.4)

where in the second equality we use the fact that since p and q are fixed, the probability they
belong to a certain cluster can be written using an indicator function. We can see from here
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that PH+ is symmetric since
(
PH+

)
p,q

=
(
PH+

)
q,p

.

Moreover, we can compute

(
P 2
H+

)
p,q

=
∑

r∈S×S

(
PH+

)
p,r

(
PH+

)
r,q

=
∑

r∈S×S

∑
C1,C2∈C

1{p ∈ C1}1{r ∈ C1}1{r ∈ C2}1{q ∈ C2}
|C1||C2|

=
∑

C1,C2∈C

1{p ∈ C1}1{q ∈ C2}
|C1||C2|

∑
r∈S×S

1{r ∈ C1}1{r ∈ C2}. (5.5)

Focusing on∑r∈S×S 1{r ∈ C1}1{r ∈ C2}, we note that since C partitions the state space S×S,
a pair r has to belong to exactly one cluster. Thus we have

∑
r∈S×S

1{r ∈ C1}1{r ∈ C2} = 1{C1 = C2}
∑

r∈S×S
1{r ∈ C2}

= 1{C1 = C2}|C2|.

Plugging this back into 5.5 yields

(
P 2
H+

)
p,q

=
∑

C1,C2∈C

1{p ∈ C1}1{q ∈ C2}
|C1|

1{C1 = C2}

=
∑
C∈C

1{p ∈ C}1{q ∈ C}
|C|

=
(
PH+

)
p,q
,

which concludes the proof that PH+ is a projection matrix.

For the computation of the rank, we show that the dimension of the space spanned by the
columns of PH+ is equal to |C|. From the transition matrix entries computed in equation 5.4, we
deduce that for each C ∈ C, all pairs p ∈ C have identical column entries in the matrix. Indeed,
comparing for example columns for two pairs p and q ∈ C, we have that for any r ∈ S × S
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(
PH+

)
r,p

=
∑
C′∈C

1{r ∈ C ′}1{p ∈ C ′}
|C ′|

= 1
|C|

=
∑
C′∈C

1{r ∈ C ′}1{q ∈ C ′}
|C ′|

=
(
PH+

)
r,q
.

Moreover, one can easily check that column vectors corresponding to the clusters are orthogonal
since for every entry, a non-zero value in one of the vector corresponds to a zero value in the
other and vice-versa. Since the columns form a set of |C| orthogonal vectors, the rank of PH+ is
|C|.

In fact, one can see the operation of the extended Houdayer move as follows: starting from a
certain pair, we teleport (or get projected) equally among all accessible pairs.

Lemma 5.2.3. Suppose we perform the extended Houdayer move on the state space S × S,
and let C denote the set of clusters which partitions the space into pairs that are accessible
from one another. Then the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ|S×S| of PH+ are in {0, 1}, such
that λ1 = λ2 = · · · = λ|C| = 1 and λ|C|+1 = λ|C|+1 = · · · = λ|S×S| = 0. In fact, for each
C ∈ C, there is a corresponding eigenvector vC with associated eigenvalue 1 which is given by
(vC)p = 1{p ∈ C}.

Proof. Recall that a projection matrix only has two possible eigenvalues, 0 or 1. Since the rank
of PH+ is |C|, it has |C| eigenvalues equal to 1. By the rank-nullity theorem, we deduce that
there are |S × S| − |C| eigenvalues with value 0.

For the eigenvectors, one can check that for all C ∈ C and all p ∈ S × S, we have
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(
PH+vC

)
p

=
∑

q∈S×S

(
PH+

)
p,q

(vC)q

=
∑

q∈S×S

∑
C′∈C

1{p ∈ C ′}1{q ∈ C ′}
|C ′|

1{q ∈ C}

=
∑

q∈S×S

1{p ∈ C}1{q ∈ C}
|C|

= 1{p ∈ C}
∑

q∈S×S

1{q ∈ C}
|C|

= 1{p ∈ C}.

Moreover, these eigenvectors form an orthogonal basis since for any two different C1, C2 ∈ C,
their dot-product is equal to

v>C1vC2 =
∑

p∈S×S
(vC1)p (vC2)p

=
∑

p∈S×S
1{p ∈ C1}1{p ∈ C2} (5.6)

= 0.

Here, we used the fact that since a pair can only belong to one cluster, every element in the
sum in equation 5.6 is 0.

These are preliminary results about the structure of the transition matrices, but they could be
used to prove further results that we mention in next section.

5.3 Possible Future Directions

From previous sections, it seems clear that there is some relationship between the resulting
Markov chains when one uses the Houdayer move or not. In particular, it would be already
a step in better understanding the inner workings of the Houdayer if one can prove why the
spectral gaps are identical for large enough values of β when comparing the single-flip strategy
versus the one with the addition of Houdayer-like moves. In this section, we provide some
possible directions to follow in order to deepen the understanding of the spectral structure of
the transition matrices studied.

• Concerning the single-flip dynamics itself, we highlighted the behavior of the spectral
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gap were it reaches a maximum which corresponds to when |λ2| = |λ|S||. Here, there are
multiple results one could go after. The first one is to try and prove that both these
eigenvalues are increasing as a function of the inverse temperature β. That is, dλ2

dβ ≥ 0 and
dλ|S|
dβ ≥ 0. The second interesting result to obtain would be to find at which temperature β

the spectral reaches its maximum, which is equivalent to finding the inverse temperature
at which |λ2| = |λ|S||.

• For the Houdayer move, getting an understanding of why the spectral gap is identical to
that when using only the single-flips for large enough β would be a first step. From there,
it would maybe possible to even understand the behavior for low values of beta, which is
when the spectral gaps start differing.

• In comparing the Houdayer move with its extended version, understanding why it is the
case that the extended version can sometimes reach larger value of spectral gap could
help highlight their differences (see figure 5.3).

• Finally, a deeper study of the general extended Houdayer move, which is when we allow to
use any distribution for the combination of Houdayer clusters to choose after computing
the local overlap (see section 4.1.1). Indeed, this could then motivate the use of particular
distributions over others, showing that using the most uniform choice is not necessarily
the best one.
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6 Conclusion

6.1 Summary

In this work, we have studied in detail the Houdayer move which is a particular cluster Monte-
Carlo update applied in the context of optimization of Ising models. This research has given
the possibility to better simulate some Ising spin-glass systems, and to solve hard optimization
problems that come from both academia and industry.

In chapter 2, the general Ising model is presented together with its relationship to the equivalent
QUBO formulation. The concept of sampling is introduced, and we explain how it can be
applied to solve optimization problems. Chapter 3 then builds on this knowledge and present the
general Markov chain Monte-Carlo sampling method, simulated annealing, parallel tempering
and cluster Monte-Carlo moves. Specifically, the Houdayer cluster update is reviewed in more
depth and some of its limitations are highlighted. Through a series of numerical simulations,
these various schemes are compared on ferromagnetic and spin-glass Ising systems.

After establishing the necessary concepts and techniques, an improved version of the Houdayer
move is introduced in chapter 4, giving a more general way to perform cluster moves. We show
how this adaptation ends up giving access to many new isoenergetic locations in the energy
landscape compared to the original move, thus enabling to escape local minima even more
easily.

Moreover, we employ this technique to improve the sampling of the ground state manifold of
degenerate problems, and more generally the sampling of low-energy solutions. This shows
to be particularly efficient in the experiments conducted, where starting from a handful of
ground states, all configurations at the ground level can be found in most cases. For the specific
case of constrained optimization problems, we present an adaptation of the scheme in order to
efficiently sample feasible solutions of the problem.

Applied in the context of an industrial scheduling-type optimization problem, the results exhibit
that a variety of feasible solutions can be efficiently generated even though this may depend on

83



Chapter 6 Conclusion

the set of solutions given as input. Because the generation is particularly successful, this paves
the way for the creation of a genetic algorithm to carry out further optimization directly in
the feasible space. Benchmarking it against simpler methods like simulated annealing turns
out to indicate that for this simple version of the production planning problem, no improved
sampling is actually required to find optimal solutions. This may however not be the case for
more complex versions where standard heuristics might already have difficulties reaching the
feasible region. In such a case, employing the genetic algorithm can drastically improve the
optimization process even starting with only a couple of feasible solutions.

In chapter 5, we discuss the theoretical aspects behind the Houdayer cluster move, focusing
primarily on the study of spectral gaps and eigenvalues of the corresponding transition matrices.
We attempt to get a better understanding of why using the Houdayer move yields higher spectral
gaps and thus a potentially faster mixing time. This also leads to exploring the structure of
transition matrices for the extended Houdayer move, giving some directions for future research.

In summary, this project focuses on the problem of solving discrete optimization problems that
are formulated as Ising spin-glass systems. In order to simulate such systems, multiple algorithms
are reviewed and developed in order to improve the state-of-the-art methods. Although many
encouraging results are obtained, there is room to both further refine and create new algorithms,
but also to study the theory behind these complex dynamics.

6.2 Future Work

There are multiple directions one can take to push the work that has been done in this project
further. There is indeed a myriad of experiments that can be performed to further understand
how useful the extended Houdayer move presented in chapter 4 is. As only few theoretical
results are known in the field, it would of course be crucial to dig deeper in that way. In
particular, having a theoretical understanding of why the (extended) Houdayer procedure can
be faster than other techniques could lead to design an "optimal" Houdayer move. Indeed, the
framework presented in section 4.1.1 being as general as possible, it could be that the choice of
distribution when choosing Houdayer clusters in the local overlap might influence the entire
process.

We list below a few possible future directions.

• The theory behind cluster Mont-Carlo moves, especially the Houdayer move, is not yet
well understood. In particular when taking the perspective of Markov chains theory, no
clear convergence results are known and it is not known how the Houdayer move affects the
convergence of the simple single-flip strategy once it is combined with it. More generally,
understanding the transition matrix corresponding to the most generic Houdayer move
(as described in section 4.1.1) is another important problem and can only lead to a better
comprehension of the corresponding dynamics.
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• Section 4.2 introduced how one could use Houdayer moves to generate more uncorrelated
solutions given a couple of them, and we saw it could indeed work for a concrete problem
from the industry. There exist many problems of such nature, that is they are highly
degenerate and contain multiple optimal solutions but it is difficult to find all of them.
An example is the k-SAT problem and its variants such as ALL-SAT or MAX-SAT (see
chapter 1 in [49]). However such a problem has more than just pairwise interactions
between variables, at most all variables could interact together. Supposing that the largest
interaction sees M variables, the function to minimize becomes a multivariate polynomial
of degree equal to M , and in such a case, the image of a graph as in the quadratic case
becomes a hypergraph where an edge can now join up to M vertices. Could one generalize
the Houdayer move to such a structure? If yes, this means one could teleport at the same
energy level even for complex problems involving interactions between more than just
two variables.

• Another way to see how the Houdayer move can be generalized is to not think in terms of
the interactions between the variables, but focus more on what values the variables can
take. So far, it was applied to the case of spins or binary variables but this heavily restricts
the type of problems to represent. Moreover, the conversion of a generic problem to Ising
or QUBO form is often cumbersome, and typically requires many auxiliary variables. A
first step in generalizing the Houdayer move in this sense would be to consider a problem
where variables can take a finite number of discrete values. A second step could be
to further allow for general discrete variables. With such a procedure, many discrete
optimization problems could potentially benefit from this kind of cluster Monte-Carlo
move.

• In general, do there exist other Monte-Carlo moves in the same spirit as the Houdayer one
which would allow to better explore the space of solutions? Indeed, there could be further
research in that area since no specific efficient method exists to solve general spin-glass
models. The various experiments demonstrated how the addition of the cluster algorithm
improves the convergence, but it is likely that other similar approaches may yield even
better results. A suggestion of similar move as the Houdayer one could be to use more
than just two configurations when doing a move. Recall that in the basic move, clusters
of spins are being swapped between configurations, but one could imagine a version
with three or more configurations, where spins are exchanged in a certain way between
configurations such that the overall energy remains constant. This would allow for a
potentially higher number of new configurations to be generated when doing improved
sampling as presented in section 4.2.

• Concerning the industry problem presented, many more complicated versions of it can be
created. As an example, one could consider more complex chains with more entities that
can share a same cache, forming a structure more complex than just a linear chain.
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A Appendix

A.1 A Python Package for Optimizing General Ising Models

As part of this Master’s project, a programming tool has been developed using the Python
programming language [50] in order to test the algorithms presented in this report. After many
iterations and improvements, the package thought of two smaller sub-packages:

A.1.1 Improving Sampling and Visualizing the Houdayer Move

The first sub-package was first developed to visualize and better understand the Houdayer
move. It can for example accept any topology given as a graph, and one can visualize how
the Houdayer move is performed. This is useful when working with particular problems and
when one wants to understand whether Houdayer moves can be successful for the corresponding
graph topology (see figure A.1).

Later on, all the algorithms for fair sampling were added, giving it the power to generate many
new solutions given a few. In particular, a generic version of the genetic algorithm presented in
section 4.2.3 is implemented. It is highly customizable and contains multiple parameters in
order to give the user the freedom to adapt the algorithm to the problem at hand.

A.1.2 Solving General Ising Spin-Glass Systems

The second sub-package’s goal is to solve general Ising spin-glass systems by giving the user
plenty of freedom when choosing which algorithms and parameters to choose.

First, the user can easily define an instance of an Ising model, either by inputting the different
interactions with corresponding weights manually, or even give a weighted graph as input.
There is also the possibility to generate random instances, or well-known ones like the square
lattice. Since many optimization problems are formulated in QUBO format, one can easily
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Figure A.1 – An example of visualization if how the Houdayer move works on a certain graph
topology using the Python package.

convert from Ising to QUBO and vice-versa in order to easily optimize all kinds of problems.

As a solver, it uses the Metropolis algorithm at its core, and allows the user to specify the
desired Monte-Carlo move, which can be the single-flip move for example. There is of course
the (extended) Houdayer move available, which can be easily combined with any other move.
Other details can be chosen such as the acceptance scheme (Metropolis or Glauber), and even
which main optimization method. Currently, both parallel tempering and simulated annealing
are implemented, but one could also extend to include algorithms like population annealing
[51].

The end goal is to make this code open-source at some point, in which case it will be accessible
in a GIT repository at https : //github.com/Adirlou/.

A.2 MCMC Methods Comparison

Some of the plots from experiments run in chapter 3 and 4 are presented here.
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Figure A.2 – Result of SA for various moves on a 32× 32 square lattice graph for the spin-glass
model.
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Figure A.3 – Result of SA for various moves on a ER(1024, 0.007) graph for the spin-glass
model.
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Figure A.4 – Result of SA for various moves on a ER(1024, 0.01) graph for the spin-glass model.
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Figure A.5 – Result of SA for various moves on a ER(1024, 0.05) graph for the spin-glass model.
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Figure A.6 – Result of SA for different variants of the Houdayer moves on a random graph with
ER(n = 10000, p = 0.0008) for the spin-glass model.
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